دورات هندسية

 

 

مشاكل تنفيذية وحلول هندسية

صفحة 88 من 160 الأولىالأولى ... 387884 85 86 87 8889 90 91 92 98138 ... الأخيرةالأخيرة
النتائج 871 إلى 880 من 1600
  1. [871]
    المهندس علاء سليم
    المهندس علاء سليم غير متواجد حالياً
    عضو فعال
    الصورة الرمزية المهندس علاء سليم


    تاريخ التسجيل: Oct 2008
    المشاركات: 71
    Thumbs Up
    Received: 1
    Given: 1
    جميلة جدا هذه المناقشات ومفيدة جدا
    مع الاسف لا استطيع ان اعطي حل حيث انني طالب بالفرقة الثالثه مدني ولا يوجد لدي خبرة
    ولكن اعتقد عند صب هذا الخزان لابد من العزل الجيد له من الاسفل من عند القاعدة
    وعند الصب علي مراحل يتم استخدام مانع تسرب
    water stoأعتقد ذلك
    انا شفت ده في بيارات وغرف مياه خاصة بالمرافق العامه والصرف الصحي حيث يتم الصب علي حطات او مراحل كل مرحله في نهايتها يوضع فواصل تمدد حيث كانت بيارت وغرف الرفع في المحطة بعمق من 9 م إلي 12 ه
    هذا علي حد علمي مازلت طالب لم اتخرج بعد
    وفواصل التمدد والانكماش تكون طبقا لحالة المنشا والمنطقة المحيطة بيه
    وتوضع علي مسافات اعتقد لاتزيد عن 12 او 15 م
    اي مثلا كل 15 او 12 م يتم وضع فواصل تمدد وانكماشوهذه الفواصل اعتقد بتكون في
    shear wall
    او حوائط عادية

    0 Not allowed!



  2. [872]
    محمد سيد2
    محمد سيد2 غير متواجد حالياً
    عضو فعال


    تاريخ التسجيل: Mar 2007
    المشاركات: 136
    Thumbs Up
    Received: 0
    Given: 0
    السلام عليكم
    مهندس رزق ومهندس علاء اشكر لسيادتكم المرور الكريم علي المشاركه
    اما بالنسبه للحلول التي اوردت في مشاركه سيادتكم فلي تعليقان
    الاول بخصوص الوتر ستوب بين القاعده والجدار
    فوجود حديد التسليح العلوي للقاعده يمنعنا من وضع water stop بالطريقه الموضحه
    اما الثانى بخصوص الوتر ستوب الخارجي والذي يوضع ملاصق للشده الخشبيه
    فان المياه بداخل الخزان وهي باستمرار تحاول الخروج ووضع الوتر ستوب بهذه الطريقه لا يحمي حديد التسليح للحائط حيث انه بعد حديد التسليح للحائط

    0 Not allowed!



  3. [873]
    رزق حجاوي
    رزق حجاوي غير متواجد حالياً

    إستشاري الهندسة المدنية


    الصورة الرمزية رزق حجاوي


    تاريخ التسجيل: Mar 2008
    المشاركات: 7,648
    Thumbs Up
    Received: 4,986
    Given: 1,442

    نظام طوبار جديد

    السلام عليكم
    في موضوع مشاكل تنفيذية وحلول هندسة , ستكون المشاركة في هذا الموضوع حول نظام حديث في منطقتنا العربية وهو استخدام الكرتون hard paper في انظمة الطوبار=الشدة=formwork بدلا من استخدام الخشب او الحديد او البلاستيك .
    في المشاريع الصغيرة قد نحتاج الى اعمدة دائرية الشكل صعوبة في تنفيذها بسبب عدم انتشار الشدات الجاهزة لدى المقاولين بسبب غلاء ثمنها وقلة استخدامها لذلك نلجأ للاستئجار هذه الانطمة.
    وكذلك نفس المشكلة عندما يكون لدينا المبنى بالكامل من الاعمدة الاسطونية عندما يطلب تنفيذ العمل بسرعة حيث يكون من الصعوبة تأمين كافة الاعداد من انظمة الشدة الاسطونية.
    ولحل هذه المشاكل السابقة او غيرها تم اختراع نظام طوبار من الورق المقوى strengthing paper (قابل للتدوير وبالتالي فهو صديق للبيئة) وهو سهل الحمل والتركيب والسئة في انه يستخدم لمرة واحدة.

    ميزات هذا النظام
    • Rain-resistant technology keeps wet weather from impacting your pour.
    • Easier to setup and brace.
    • Superior strength-to-weight properties prevent blowouts, during concrete form setting.
    • More effective concrete form setting.
    • Easy to cut and drill at the job site.
    • Heat resistance eliminates form deformation during the pour.
    • Sonoco manufactures and distributes Sonotube brand concrete forms throughout North America, minimizing lead times.
    • No cleaning, reassembling, or return freight costs.
    • Set and pour multiple columns at one time.
    ERECTION


    A. Place and brace column forms in accordance with manufacturer's instructions. At a minimum, forms must be secured at the base and at the top of the form. Additional mid-point bracing may be required for column heights in excess of 12 feet

    B. Erect forms at locations and to elevations as indicated on the Drawings.

    C. Erect column forms plumb. Bracing must be adequate to maintain plumb of column form throughout pouring and curing of concrete.

    D. Avoid damaging interior surface of forms.

    E. Waterproof and reinforce openings cut into forms.

    F. Do not use forms that are out-of-round, deformed, damaged, or contain defects that could impair concrete surface.

    G. Protect forms from rain and snow if work is delayed and forms have been positioned for placing concrete.

    H. Place waterproof sheeting over top of forms to prevent damage to interior surface by rain or snow.

    I. Do not allow forms to stand in water or snow before placing concrete.

    3.3 PLACING CONCRETE

    A. Place concrete as specified in Section 03300, unless otherwise specified in this section.

    B. Do not place concrete if column forms are wet.

    C. Apply form release coating to interior surface.

    D. Place concrete at pour rate in accordance with manufacturer's instructions. Sonotube RainGuard is sold in standard lengths of 12 feet. Sonotube Commercial is sold in standard lengths of 20 feet. Either form can be poured to this full height without pour rate restrictions, as indicated on product label. For lengths in excess of these standards, call for instructions

    E. Do not touch interior surface of forms with vibrator.

    F. Do not vibrate concrete from exterior of forms.

    3.4 REMOVAL



    A. Remove column forms in accordance with manufacturer's instructions.

    B. Adhesion of Concrete to Form increases over time. If removal of the form is required, remove as soon as operations will not damage concrete, a minimum of 24 hours and a maximum of 5 days after placing concrete is recommended.

    C. Prevent damage to concrete from form removal.

    D. Removal of the form is not necessary except as required by Engineering design or local Building Code

    ويكون بعدة اقطار واطوال وحسب القطر والطول تكون السماكة للورق.




















    ومن الاستخدمات الاخرى لهذا النظام
    Columns for residential and commercial buildings and other structures.
    Outdoor sign, light pole and fence-post bases.
    Footings and concrete column molds.
    Stub piers for elevated ramps.
    Flagstones and round steps.
    Theatrical and movie props.
    Super-sized shipping.
    Other concrete column molds

    وللمزيد حول هذا الموضوع
    اليكم هذه الافلام التي تشرح هذا النظام
    http://www.youtube.com/watch?v=RnexAr_YKf0

    0 Not allowed!


    اذا استفدت من مشاركتي فلا تبخل علي بدعوة بظاهر الغيب
    بالتوفيق لي وللوالد والوالدة وللمؤمنين بالرحمة والمغفرة

    " ربي اغفر لي ولوالدي وللمؤمنين جميعا"
    يمكن التواصل من خلال الايميل الشخصي او
    www.husseinhijjawiest.com


  4. [874]
    عبد الرحمن عمارة
    عبد الرحمن عمارة غير متواجد حالياً
    عضو


    تاريخ التسجيل: Mar 2010
    المشاركات: 22
    Thumbs Up
    Received: 0
    Given: 1
    اقتباس المشاركة الأصلية كتبت بواسطة ماجدان مشاهدة المشاركة
    وفعلا هو خطا ليس بالأمر الصعب ولكن يجب معالجته بطريقه صحيحه

    للعلاج
    1 - بأستخدام الأجنه والمطرقه ( الربع ) يتم تكسير جزء التعشيش وهو كل الركام الضعيف المعزول تماما بدون ماده لاحمه ( الماده الأسمنتيه ) حتى يظهر لك الركام الكبير شديد التماسك فى منطقة التعشيش وذلك من خلال صنيعى نحات وتأكد أنه شديد التماسك واللحام بالخرسانه
    2 - يتم بأستخدام كمبريسور هواء تنظيف المكان جيدا من مخلافات التكسير والأتربه العالقه بالتسليح
    3- يتم سنفرة الحديد الظاهر تماما وجيدا بواسطة سنفره عاديه (يدويه ) أو صاروخ
    4 - يتم رش مكان التعشيش هذا بالماء جيدا حتى - يبرق - باللهجه المصريه
    5 - يدهن حديد التسليح بماده برايمر جيدا
    6 - يتم عمل خلطه خرسانيه بنفس نسب خلط الخرسانه المصبوبه فى الموقع
    7- يضاف ماده أيبوكسى أو أديبوند ( ده فى مصر وآسف انى غير مطلع على السوق السعودى بس أعتقد أن أكيد هتلاقى المواد دى فى مكاتب توكيلات المعالجه بالكيماويات ) إلى الخرسانه للحام الخرسانه القديمه بالجديده ويتم الصب أو بمعنى أسهل يتم ملىء مكان التعشيش لأنه باطبع سيكون صغير وغير نافذ خلال العمود إذ لم يسمى تعشيش حين أذ وننصح بتكسير العمود فى هذه الحاله
    ولم أ تطرق لمعنى التعشيش وأسبابه لأن الأخوه المهندسين سبقونى مشكورين
    أرجو أن أكون قد وفقت فى أفادتك
    والله أعلى وأعلم

    سالدان للهندسه والإنشاءات
    ونسب الخلطة كام؟
    يعني ايدبوند اد ايه؟
    شكرا

    0 Not allowed!



  5. [875]
    الارديني
    الارديني غير متواجد حالياً
    جديد


    تاريخ التسجيل: Mar 2010
    المشاركات: 5
    Thumbs Up
    Received: 0
    Given: 0
    السلام عليكم
    اقترح لمثل هذه الحالة التحشية بالكونكريت مع وجود مادة رابطة مثلs b rولتحاشيها يكون الصب باستخدم المواد االناعمة او مونة السمنت وشكرا

    0 Not allowed!



  6. [876]
    m66666677
    m66666677 غير متواجد حالياً
    عضو متميز
    الصورة الرمزية m66666677


    تاريخ التسجيل: Nov 2006
    المشاركات: 5,204
    Thumbs Up
    Received: 30
    Given: 0
    اقتباس المشاركة الأصلية كتبت بواسطة رزق حجاوي مشاهدة المشاركة
    السلام عليكم
    تصفح هذا الموقع وستجد افضل موقع لتنزيل الكتب الهندسية

    http://eng4ever.en.funpic.de/


    م. رزق حجاوي
    Unfortunately
    almost all the links don't work at all

    0 Not allowed!



  7. [877]
    رزق حجاوي
    رزق حجاوي غير متواجد حالياً

    إستشاري الهندسة المدنية


    الصورة الرمزية رزق حجاوي


    تاريخ التسجيل: Mar 2008
    المشاركات: 7,648
    Thumbs Up
    Received: 4,986
    Given: 1,442

    تدعيم اساس مبنى قائم

    السلام عليكم
    قبل البدء في مشاركة جديدة في سلسلة موضوع "مشاكل تنفيذية وحلول هندسية " انوه هنا الى ان معالجة المشاكل في الاساسات ليست من الحلول السهلة او مضمونه الحل وكذلك فهي حلول مكلفة في اغلب الاحيان وقد ذكرت سابقا مثالا لمشكلة انهيار جدار ساند للحفريات والمياه( بسبب خطأ بالتصميم وتفاصيل مناطق الوصل )كيف ان انهيارة قد كلف الشركة المنفذة 70 مليون جنية استرليني .


    لذلك في مرحلة التصميم يجب اجراء فحص للتربة من قبل مكتب مختص وعدم الاعتماد على الخبرة السابقة في تقدير قدرة تحمل التربة لان فحص التربة لا يشمل فقط تحديد قدرة التربة ومقدار عمق الاساس وانما يجب ان تتضمن الدراسة للموقع :-
    • طريقة الحفر والحماية للحفريات .
    • ونوعية التربة ومدة تأثرها بالمياه وطرق تصريف المياه خلال مرحلة الانشاء او بعدها.
    • التحليل الكميائي للتربة لمعرفة نسبة الاملاح والكبريتات وتحديد طريقة حماية الخرسانة ونوعية الاسمنت المطلوب استخدامه .
    • عدد الطوابق التي يمكن ان تتحملها التربة .
    • تحديد K للتربة.
    • تحديد فيما اذا كان هناك كهوف او ان التربة قابله للانهيار.
    • طرق التدعيم للخدمات او الابنية القائمة قبل البدء بالحفر.
    • وغيرها من الفحوصات اللازمة حسب طبيعة الموقع والمبنى.
    • الكشف على الحفريات اثناء زبعد انهاء الحفر واعطاء تقرير خطي يوضح فيه ان طبيعة التربة اثناء الحفر وان منسوب التأسيس الذي تم الوصول اليه هو مطابق لما ورد في تقرير فحص التربة.
    اما من ناحية التصميم الانشائي للاساسات والاعمدة فيجب ان يكون فيه عوامل امان للاحمال المتوقعه (عدد طوابق حسب التنظيم المسموح به بالاضافة لطابق اضافي على الاقل )لان اخذ ذلك بعين الاعتبار يغني كثيرا عن حل المشاكل التنفيذية للاساسات او الاعمدة ،
    وبالمناسبة فان ذلك لا يزيد التكلفة عن 3-5 % من ثمن الخرسانة المسلحة للاساسات والاعمدة.
    واعود الان الى المشاركة الاساسية .

    ساتحدث اليوم عن تدعم اساس لمبنى قائم حصل فيه هبوط جزئي نتيجة الامطار الغزيرة وفشل نظام التصريف لمياه الامطار بتصريف هذه المياه مما ادى الى وصولها الى الاساس وحصول هبوط جزئي تحت زاوية المبنى بمقدار 5 سم .مما ادى الى هبوط المدة الارضية (الميده)Salb on Grade وكذلك تأثر الواجهة الخارجية بهذا الهبوط.
    Five story residential building using Special Reinforced Concrete (RC) walls for the lateral load-resisting system and post-tensioned concrete for all elevated slabs. Spread footings support columns for the entire 42,000 square foot building footprint. Construction of the building progressed on schedule without unusual complication until placement of the concrete for the roof slab. Once the roof slab was poured, it became evident the foundation under a column in the Southeast corner of the building had settled approximately two inches. The settlement caused cracking in the slab-on-grade and the first-level elevated slab, and damage to exterior metal stud framing that was being installed at ground level. Excessive distortion of metal stud framing was the initial indicator that there was a problem in this corner of the building. While the cause of the foundation settlement has not been officially determined, it was clear that timely corrective measures were needed to avoid delays in the schedule and excessive costs to the project. Upon being alerted by the contractor; the geotechnical and structural engineers arrived on site to assess safety concerns and to determine a course of action. One speculation on the cause of the problem was that heavy rains had created soil erosion of a utility trench adjacent to the footing, allowing soil below the footing to spread laterally. It was early winter in the Pacific Northwest, typically being the rainy season. It was therefore decided that, before any design solution was considered, soil stabilization was necessary to prevent further column settlement and hopefully mitigate continued damage to the building.
    Figure 1: Finished building corner and exposed column that experienced soil settlement.
    ولحل هذه المشكلة تقرر ان يتم حقن التربة تحت الاساسات بمادة inject polymer more than 30 feet into the soil وذلك لتقوية وتثبيت التربة تحت الاساس وتقليل الهبوط المتوقع بعد حل المشكلة .
    Soil Stabilization

    The geotechnical engineer recommended that the apparent loose soil below the footing be pressure grouted with non-shrink or cement-bentonite grout as soon as possible. URETEK ICR, a deep injection process to control soil settlement was identified as the most suitable method. This process can inject polymer more than 30 feet into the soil where the polymer will expand to fill voids in the substrate, there-by minimizing future foundation settlement. To mitigate further settlement for the building, soil strengthening began within three days after soil remediation was recommended. Holes were drilled through the slab-on-grade and the exterior of the structure at an angle to access the soil below the foundation. The expanding polymer was pressure injected into the soil using six probes on each side of the foundation, approximately nine feet deep. Injections were applied at greater depths in the area of ground most affected by weak or unconsolidated soils. This application appeared to arrest settlement of the column, preventing further potential damage to the building and providing the time needed to correct the column settlement issue for the building.
    اما الحل الانشائي للهبوط الذي حصل فقد تقرر ان يتم رفع الاساس واعادته للمنسوب السابق وذلك من خلال عمل Micro-Piles تحت الاساس ومن ثم استخدام الجكات لرفع الاساس ومن ثم التدعيم بمقاطع معدنية .
    Constraints in Engineering a Solution

    Ultimately, it was decided the column base needed to be raised back to its original level. To accomplish this, a contractor specializing in foundation construction. Engineering a solution for the column jacking required consideration of several items:

    Figure 2: Schematic showing the overall concept of column jacking at the base of the footing. Sacrificial hydraulic actuators, supported by pin piles, raise the footing back into position and will ultimately be encased in steel pipe.
    1) Since settlement occurred after the roof slab was placed, the spread footing was supporting an estimated 300 kips of structure self-weight.
    2) Elevated slabs already constructed restricted headroom clearances for most hydraulic equipment needed for temporary column jacking and the permanent repair.
    3) One edge of the settled footing was within inches of the property line. The City of Portland does not allow encroachment into the public right-of-way beyond the property line.
    Determining the most appropriate method to raise the footing proved to be the most difficult design task. The original concept proposed by the contractor was to install sacrificial micro-piles on either side of the footing, and span over the top of the footing with steel girders. Hydraulic actuators would be placed on the steel girders attached to a steel collar, which was in turn attached to the concrete column using post-installed anchors. This was considered the safest solution because the footing would not be undermined. The hope was to raise the footing and fill the void with grout. For this solution, the 300 kip column load required numerous large, post-installed anchors into the side of the column. Detailed for seismic considerations of a potential hinge region as required by code, the 24-inch diameter column had #4 spiral ties at a 2-1/4-inch pitch in the hinge region. Placing these anchors through the longitudinal and spiral confinement of the column was problematic. Also, the quantity needed would have extended the collar connection nearly 7 to 8 feet above the slab-on-grade. Further, the column finish was intended to be exposed concrete, and the visual impact after the removal of the anchors was undesirable architecturally.
    Variations of this basic concept were also considered. To avoid scarring the concrete column surface, jacking to shoring in direct bearing below the slab was considered. Since a single floor slab did not have sufficient shear capacity to resist the expected gravity loads on the column, the shoring of each slab to the roof would have been needed. Ensuring adequate support of each upper floor slab from the shoring, to have each slab contribute equally to the resistance of the gravity load, also seemed problematic.

    Figure 3: Reinforced concrete ties for the top of piles.
    Simultaneous to the design of footing jacking, the geotechnical engineers were taking additional samples of soil around the footing. They found that the soil under the footing was extremely soft and, although strengthened with the expanding polymer, there was sufficient concern in relying on the soil to support the structure in the final condition. Consequently, it was decided that piles would be needed to permanently support the column in its final position.
    In consideration of the need for permanent support, the preferred method proposed by the Contractor was to have steel girders span the footing (having the girder supported on either side of the footing by piles) and embed anchors into the footing from above. In this configuration, the post-installed anchors would be used in tension to lift the column and to support the column permanently. This raised numerous structural issues for the final configuration of the column, even if sufficient anchor capacity could be achieved without compromising the footing capacity. Further, this would have impacted the architectural function of the space at ground level.
    Ultimately, the final solution was likely achieved only by meeting with the foundation contractor to work out a solution that was constructible, could allow the column to be lifted as needed, and eventually provide the permanent support needed for the column to be structurally competent. Since the footing had to be supported permanently by piles, the primary structural consideration was to place the footing in direct bearing on the piles. This would require placing girders below the footing, lifting the footing using hydraulic actuators to jack against the girders below the footing and tying it off for permanent use. One obstacle to the final solution was how to use the piles to lift the footing, presumably placing the hydraulic actuators directly on the piles, and to have the steel girder framework below the footing also bear directly on the piles for the permanent support. Eventually, it was concluded the only way to achieve this was to sacrifice the hydraulic actuator. Compression-only hydraulic actuators with sufficient capacity to lift approximately twice the estimated gravity loads were found. These actuators could jack the column footing to the needed elevation, and were small enough to be enclosed in a steel pipe for permanent support between the steel framework below the footing and the top of the pile.

    Figure 4: Concrete place to top of pile cap. Actuators are connected to the same hydraulic pump to ensure the lifting load is distributed to the footing equally.
    The Final Design

    Since most work was within the confines of the building envelope, it was decided that only micro-piles could be used to support the structure. Micro-piles may be installed in sections and only require approximately ten feet of clearance overhead. The micro-pile consisted of a nominal 7-inch diameter, N80 steel pipe casing, 4,000 psi grout and a 1-3/4-inch diameter high strength reinforcing bar. Having an allowable compressive capacity of 65-tons, the piles were 60 feet deep with a 35-foot bond zone for the high-strength rod. In total, four piles were used and placed symmetrically under the column.
    Because the footing was at the property line, the outside micro-piles had to be installed within the footprint of the footing. To maintain symmetry, piles on the opposite edge were also placed within the footing footprint. This was accomplished by core-drilling 10-inch diameter holes through the footing at four locations. Coring the holes reduced the footing cross section, and also cut through longitudinal and transverse reinforcement on either edge. The piles were placed at locations so that the resulting shear and flexure imparted on the footing in bearing would not exceed the remaining strength of the footing.
    With the micro-piles in place, a limited amount of soil below the footing was removed. Because it was a property line footing, the footing is relatively long and narrow, measuring 6 feet by 18 feet. Because of its length, calculations suggested that the soil bearing capacity could accommodate some soil removal for the loads currently on the column. A sufficient amount of soil was to be removed so that the steel girders could be placed below the footing and span to the piles on either side. The steel casing of the micro-pile was cut down to accommodate the steel girder depth, the height of the actuator and enough room to provide stability of the pile top. A cap plate was welded to the top of the pile to provide bearing for each hydraulic actuator and eventually support the weight of the column and footing.
    With large forces expected at the pile top, it was felt the pile needed to be stabilized in each direction. Deformed bar reinforcement was used to create a grade beam along the length of the footing, and steel angle was used to tie transversely below the footing. Then, self-consolidating concrete was cast to the bearing plate level mitigating any slight out-of-alignment of the piles.
    Two HP14 x 117 girders were placed below the footing to span to each pile. Primarily, the HP14 needed to have adequate shear capacity to support the total load computed for the 5-story column. To ensure proper bearing on the HP14, each end of the spanning girder had a bearing plate of sufficient area to accommodate its share of the total column load. Full depth stiffeners were added at each bearing location of the HP14 to prevent any possible web crippling. The bottom of the footing was scraped clean to provide uniform bearing, and the bearing plate was thick enough to avoid any other possible bearing location between the steel girder and the footing.

    Figure 5: Hydraulic actuators encased in structural steel pipe. Pipe is permanent support for the HP 14 spreader beam and footing.
    Four 100-ton compression-only hydraulic actuators were place between each pile cap and the HP14 girder ends. Hoses for each hydraulic actuator were linked to the same electric pump and fitted with quick release couplers. Linking the hoses to one pump was needed to ensure that all hydraulic actuators shared the column load equally. Quick releases were needed to remove the hoses from each hydraulic actuator while still pressurized, thereby maintaining their continued resistance of the gravity loads.
    With the hydraulic actuator system in place, the footing was easily raised back into position. Numerous indicators were used to monitor the lifting of the footing base, but the survey equipment positioned across the street to monitor targets placed on each floor dictated the final position. When the roof of the 5-story structure reached the desired elevation, the column jacking was stopped. Nearly as computed, of the 800 kip total actuator capacity, the demand needed to lift the footing was approximately 350 kips.
    Once the footing was back in position, the hoses were removed from the actuators while pressure was maintained to sustain the column load, and each hydraulic actuator was encapsulated with steel pipe. Structural steel pipe had been delivered to the site in lengths longer than was needed. The final length of each hydraulic actuator was measured and the structural steel tube was cut to length. Each tube was split in two and a notch was provided at the base to accommodate the coupler for the hydraulic actuator. While each actuator sustained the needed pressure, the tubes were welded to the pile cap plate, the bottom of the HP14, and along each vertical tube seam. The entire assembly was then encased in concrete.
    The final step was to finish the concrete slab-on-grade that was disrupted for construction. Since the new footing was effectively supported on a pile foundation, the footing was tied to the slab-on-grade sufficiently to resist laterally 10% of the expected column load in either direction.

    Figure 6: Self-consolidating concrete cast throughout the excavation to top of footing. Slab-on-grade cast back with reinforcement to resist a lateral load of 10% of the expected maximum column load.
    Conclusion

    Once it was determined the column footing needed to be raised back to its original configuration, engineering the final solution took approximately 1-1/2 weeks, including several days to develop the solution with Scheffler Northwest, Inc. and several days to work out the details. Construction required approximately 3 weeks to be able to lift the column. The actual process of column jacking took less than an hour, and progressed without any complications. Final installation of steel tubing and refinishing the slab-on-grade took less than two working days.
    Perhaps the most critical item of this design was working with the contractor to develop a solution to obtain actuators with enough capacity to lift the column yet small enough to eventually become encased in the steel tube. Once this solution became apparent, which placed the column jacking and the permanent resistance of the column in bearing, the complications of engineering a competent solution diminished.▪

    0 Not allowed!


    اذا استفدت من مشاركتي فلا تبخل علي بدعوة بظاهر الغيب
    بالتوفيق لي وللوالد والوالدة وللمؤمنين بالرحمة والمغفرة

    " ربي اغفر لي ولوالدي وللمؤمنين جميعا"
    يمكن التواصل من خلال الايميل الشخصي او
    www.husseinhijjawiest.com


  8. [878]
    مصطفى المطني
    مصطفى المطني غير متواجد حالياً
    عضو فعال


    تاريخ التسجيل: Mar 2008
    المشاركات: 96
    Thumbs Up
    Received: 2
    Given: 0
    السلام عليكم:
    لدينا بناء على الهيكل وقد صمم لوظيفة مكاتب ثم تم تعديل وظيفته ليصبح فندق
    قام المستثمرون له بتكسير سقف القبو لجعل منسوب الطابق الارضي منخفض
    المشكلة كيف نحمل السقف الجديد للقبو ؟

    0 Not allowed!



  9. [879]
    رزق حجاوي
    رزق حجاوي غير متواجد حالياً

    إستشاري الهندسة المدنية


    الصورة الرمزية رزق حجاوي


    تاريخ التسجيل: Mar 2008
    المشاركات: 7,648
    Thumbs Up
    Received: 4,986
    Given: 1,442
    اقتباس المشاركة الأصلية كتبت بواسطة مصطفى المطني مشاهدة المشاركة
    السلام عليكم:
    لدينا بناء على الهيكل وقد صمم لوظيفة مكاتب ثم تم تعديل وظيفته ليصبح فندق
    قام المستثمرون له بتكسير سقف القبو لجعل منسوب الطابق الارضي منخفض
    المشكلة كيف نحمل السقف الجديد للقبو ؟
    السلام عليكم
    اهلا بك في المنتدى وبمشاركتك بالموضوع.
    بخصوص سؤالك للاسف غير واضح لذا يطلب
    • ارسال صور لسقف القبو .
    • ارسال مخطط يبين الوضع السابق والحالي
    • وهل انت مهندس ومالك للبمنى ؟؟؟.
    وان شاءالله ستجد كل مساعدة ممكنه.

    0 Not allowed!


    اذا استفدت من مشاركتي فلا تبخل علي بدعوة بظاهر الغيب
    بالتوفيق لي وللوالد والوالدة وللمؤمنين بالرحمة والمغفرة

    " ربي اغفر لي ولوالدي وللمؤمنين جميعا"
    يمكن التواصل من خلال الايميل الشخصي او
    www.husseinhijjawiest.com


  10. [880]
    hani shurafa
    hani shurafa غير متواجد حالياً
    جديد


    تاريخ التسجيل: Nov 2010
    المشاركات: 6
    Thumbs Up
    Received: 0
    Given: 0
    اوافق جميع الاخوة بالراي ولكن اظن الاحسن تكسير جميع الخرسانة الهشة و يتم التنظيف بالقظف الرملي لتعذر التنظيف باية طريقة اخرى مع مراعاة بقاء التدعيم ,و التنظيق بالماء مباشرة قبل الصب مباشرة و يستحسن استعمال مواد من نفس المواد المستعملة سابقا مع استعمال روبة ااسمنتية قبل الصب مع الشكر

    0 Not allowed!



  
صفحة 88 من 160 الأولىالأولى ... 387884 85 86 87 8889 90 91 92 98138 ... الأخيرةالأخيرة
الكلمات الدلالية لهذا الموضوع

عرض سحابة الكلمة الدلالية

RSS RSS 2.0 XML MAP HTML