دورات هندسية

 

 

Designs for Offshore Pipelines in an Arctic Environment

صفحة 1 من 2 12 الأخيرةالأخيرة
النتائج 1 إلى 10 من 12
  1. [1]
    الصورة الرمزية Eng-Maher
    Eng-Maher
    Eng-Maher غير متواجد حالياً

    مشرف قسم الهندسة البحرية.

      وسام الاشراف


    تاريخ التسجيل: Aug 2006
    المشاركات: 4,879
    Thumbs Up
    Received: 103
    Given: 408

    Designs for Offshore Pipelines in an Arctic Environment

    An Engineering Assessment of Double Wall Versus Single Wall Designs for Offshore Pipelines in an Arctic Environment Final

    ************************************************** **************************

    *******S
    1.0 INTRODUCTION 1-1
    2.0 STUDY OBJECTIVES 2-1
    3.0 EXECUTIVE SUMMARY 3-1
    3.1 Background 3-1
    3.2 Project Basis 3-2
    3.3 Assumptions 3-3
    3.4 Design and Construction 3-3
    3.5 Operations and Maintenance 3-5
    3.6 Repairs 3-5
    3.7 Costs 3-6
    3.8 Risk 3-6
    3.9 Advantages and Disadvantages 3-9
    4.0 SCOPE 4-1
    5.0 CONCLUSIONS 5-1
    5.1 Background 5-1
    5.2 Double Wall Configuration 5-2
    5.3 Comparative Structural Robustness 5-2
    5.4 Corrosion 5-2
    5.5 Leak Detection and Containment 5-3
    5.6 Constructability 5-3
    5.7 Construction Quality 5-3
    5.8 Operations and Maintenance 5-3
    5.9 Abandonment 5-4
    5.10 Comparative Cost Assessment 5-4
    5.11 Operations and Maintenance Cost 5-4
    5.12 Comparative Risk Assessment 5-5
    5.13 Comparative Life Cycle Cost and Risk 5-5
    5.14 Advantages and Disadvantages of Double Wall Pipe Relative to Single Wall Pipe 6.0 BA CKGROUND 6-1
    6.1 Literature Review 6-1
    6.1.1 Thermal Insulation 6-2
    6.1.2 Chemical Industry Application 6-6
    6.1.3 Pipe Bundles 6-8
    6.1.4 Cased Pipelines Crossings of Highways and Railroads 6-11
    6.1.4.1 Corrosion Protection 6-13
    6.1.4.2 Structural Integrity 6-14
    6.1.5 US DOT Position on Use of Double Walled Pipelines 6-15
    6.1.6 Offshore Pipe in Pipe and Bundle Statistics 6-15
    6.2 Designed Performance vs. Actual Performance 6-20
    MMS – Arctic Offshore Pipeline Comparative Assessment
    6.2.1 Subsea Pipeline Design Review and Rationale 6-20
    6.2.1.1 ARCO Alpine Colville River Crossing 6-22
    6.2.1.2 Panarctic Drake F-76 Subsea Flowline 6-24
    6.2.1.3 BP Exploration Troika Towed Bundle Flowline 6-27
    6.2.1.4 BP Exploration Alaska Liberty Island Oil Pipeline 6-31
    6.2.1.5 BP Exploration Northstar Subsea Pipeline 6-34
    6.2.2 Subsea Pipeline Operational Performance Review 6-37
    6.2.2.1 Literature Search Results 6-38
    6.2.2.2 Operator Survey Results 6-38
    7.0 COMPARATIVE ASSESSMENT OF SINGLE AND DOUBLE WALLED PIPELINES 7.1 Project Basis 7-1
    7.1.1 Project Basis Parametric Considerations 7-6
    7.1.1.1 Pipe Material 7-6
    7.1.1.2 Product Temperature 7-7
    7.2 Single Walled Pipeline – Conceptual Design 7-9
    7.3 Double Walled Pipeline – Conceptual Design 7-9
    7.4 Functional Requirements of Inner and Outer Pipes in Double Walled Pipelines 7.5 Non-conventional Double Walled Design Opportunities 7-19
    7.6 Design Considerations 7-19
    7.6.1 Structural Integrity 7-20
    7.6.1.1 Rationale 7-20
    7.6.1.2 Basis of Pipeline Response Analysis 7-26
    7.6.1.3 Numerical Model for Pipeline Response 7-29
    7.6.1.4 Structural Robustness Analysis 7-32
    7.6.1.5 Pipeline Structural Design Sensitivity 7-41
    7.6.2 Corrosion 7-42
    7.6.2.1 Material Selection 7-43
    7.6.2.2 Cathodic Protection 7-46
    7.6.2.3 Chemical Corrosion Inhibition 7-48
    7.6.3 Leak Detection and Containment 7-50
    7.7 Constructability 7-51
    7.8 Construction Quality 7-55
    7.9 Operations And Maintenance 7-56
    7.9.1 Operation 7-56
    7.9.2 Maintenance 7-60
    7.10 Abandonment 7-63
    8.0 COMPARATIVE COST ASSESSMENT 8-1
    8.1 Method 8-1
    8.2 Design 8-2
    8.3 Materials 8-2
    8.4 Construction 8-2
    8.4.1 Estimate Basis 8-2
    8.4.2 Construction Method 8-3
    8.4.3 Construction Cost Estimating Method 8-4
    MMS – Arctic Offshore Pipeline Comparative Assessment
    8.4.4 Estimate Assumptions 8-4
    8.4.5 Estimated Total Installed Cost 8-6
    8.5 Operation and Maintenance 8-6
    8.6 Abandonment 8-15
    9.0 COMPARATIVE RISK ASSESSMENT 9-1
    9.1 Design Risk 9-1
    9.2 Construction Risk 9-3
    9.3 Schedule 9-5
    9.4 Quality 9-6
    9.5 Integrity Monitoring 9-6
    9.6 Repair 9-11
    9.6.1 Open Water Season Variation Effects on Repair 9-14
    9.6.1.1 Open Water Season Variation Assessment 9-14
    9.6.1.2 Open Water Season Assumptions 9-17
    9.7 Summary of Comparative Risks 9-19
    10.0 COMPARATIVE LIFE CYCLE COST AND RISK 10-1
    10.1 Life-Cycle Cost 10-1
    10.2 Risk Analysis Framework 10-4
    10.2.1 Introduction 10-4
    10.2.2 Risk Analysis Procedure 10-5
    10.2.2.1 Hazard Characterisation 10-6
    10.2.2.2 Hazard Quantification 10-7
    10.2.2.3 Consequence 10-8
    10.2.3 Risk Estimates 10-8
    10.3 Risk Issues for Arctic Offshore Pipeline Systems 10-10
    10.3.1 Limit States and Target Safety Levels 10-12
    10.3.2 Inference from the Historical Record 10-12
    10.3.3 Hazard Frequency Analysis 10-17
    10.3.4 Event Consequence 10-24
    10.4 Comparative Risk Assessments 10-25
    10.4.1 Functional Failure 10-26
    10.4.2 Containment Failure 10-27
    10.4.3 Summary 10-28
    10.5 Factors Influencing Risk Assessment and Life Cycle Cost 10-28
    APPENDICES A Bibliography B Glossary of Terms / Definitions 6.1 Literature Review Summaries 7.1 Physical Environment and Environmental Loads 7.1.1 Physical Environment A7-1 7.1.1.1 Meteorology A7-3 7.1.1.2 Oceanography A7-8
    MMS – Arctic Offshore Pipeline Comparative Assessment
    7.1.2
    7.1.1.3 Geotechnical conditions A7-12 7.1.1.4 Ice Regime A7-15 Environmental loads A7-21 7.1.2.1 Ice scour A7-21 7.1.2.2 Strudel scour A7-23 7.1.2.3 Thaw settlement A7-26 7.1.2.4 Rare Environmental Events A7-29 7.9-1 Pipeline Integrity Monitoring Methods 7.9-2 Subsea Pipeline Repair 8.4-1 Construction Cost Estimates 10.1-1 Civil Works Cost Estimates for an Offshore Pipeline

    --------------------

    http://www.mms.gov/tarprojects/332/332AA.pdf

  2. [2]
    Eng-Maher
    Eng-Maher غير متواجد حالياً
    مشرف قسم الهندسة البحرية.
    الصورة الرمزية Eng-Maher


    تاريخ التسجيل: Aug 2006
    المشاركات: 4,879

    وسام الاشراف

    Thumbs Up
    Received: 103
    Given: 408
    Decision Support System for Inspection and
    Maintenance: A Case Study of Oil Pipelines

    **************************************
    الرابط
    http://www.d.umn.edu/~honchen/decisi..._pipelines.pdf

    0 Not allowed!




    الحمد لله

  3. [3]
    Eng-Maher
    Eng-Maher غير متواجد حالياً
    مشرف قسم الهندسة البحرية.
    الصورة الرمزية Eng-Maher


    تاريخ التسجيل: Aug 2006
    المشاركات: 4,879

    وسام الاشراف

    Thumbs Up
    Received: 103
    Given: 408
    Influence of Pipeline Span on the Dynamic Response
    ************************************************** *****************
    http://www.clarkson.edu/projects/reu...eports/Lee.pdf

    0 Not allowed!




    الحمد لله

  4. [4]
    Eng-Maher
    Eng-Maher غير متواجد حالياً
    مشرف قسم الهندسة البحرية.
    الصورة الرمزية Eng-Maher


    تاريخ التسجيل: Aug 2006
    المشاركات: 4,879

    وسام الاشراف

    Thumbs Up
    Received: 103
    Given: 408
    PIPELINE INTEGRITY MANAGEMENT STRATEGY FOR AGING OFFSHORE
    PIPELINES
    By, C Clausard, MACAW Engineering Limited, Wallsend, UK

    ************************************************** ****************
    http://www.ppsa-online.com/papers/20...7-Clausard.pdf

    0 Not allowed!




    الحمد لله

  5. [5]
    Eng-Maher
    Eng-Maher غير متواجد حالياً
    مشرف قسم الهندسة البحرية.
    الصورة الرمزية Eng-Maher


    تاريخ التسجيل: Aug 2006
    المشاركات: 4,879

    وسام الاشراف

    Thumbs Up
    Received: 103
    Given: 408
    Risk Assessment of Deepwater Gas Trunklines
    ************************************************** **************
    As offshore pipeline systems are extended into frontier deepwater areas, questions are rightly
    asked of the constructability and long-term reliability of such systems. A wide range of field
    survey and study work can be applied to improve understanding of risks and uncertainties to
    a level whereby these can be compared against acceptance criteria. Quantitative risk analysis
    (QRA) is able to contribute to this process.
    QRA may be performed for pipelines in order to:
    • quantify risks to persons, the environment and the assets in any phase of the project
    ---------------------------------------------

    http://www.riskassessor.com/deeppipe.pdf

    0 Not allowed!




    الحمد لله

  6. [6]
    a_a_k
    a_a_k غير متواجد حالياً
    عضو


    تاريخ التسجيل: Sep 2007
    المشاركات: 46
    Thumbs Up
    Received: 0
    Given: 0
    يعطيك العافيه

    0 Not allowed!



  7. [7]
    Eng-Maher
    Eng-Maher غير متواجد حالياً
    مشرف قسم الهندسة البحرية.
    الصورة الرمزية Eng-Maher


    تاريخ التسجيل: Aug 2006
    المشاركات: 4,879

    وسام الاشراف

    Thumbs Up
    Received: 103
    Given: 408
    مشكوور اخى a-a-k

    0 Not allowed!




    الحمد لله

  8. [8]
    هندسة بحرية
    هندسة بحرية غير متواجد حالياً
    جديد


    تاريخ التسجيل: Nov 2007
    المشاركات: 9
    Thumbs Up
    Received: 0
    Given: 0
    شكراً لك يا م.ماهر

    0 Not allowed!



  9. [9]
    Eng-Maher
    Eng-Maher غير متواجد حالياً
    مشرف قسم الهندسة البحرية.
    الصورة الرمزية Eng-Maher


    تاريخ التسجيل: Aug 2006
    المشاركات: 4,879

    وسام الاشراف

    Thumbs Up
    Received: 103
    Given: 408
    العفو اخى هندسه بحريه
    نورت
    :)

    0 Not allowed!




    الحمد لله

  10. [10]
    الزنتانىاكرم
    الزنتانىاكرم غير متواجد حالياً
    جديد


    تاريخ التسجيل: Jun 2008
    المشاركات: 1
    Thumbs Up
    Received: 0
    Given: 0

    بارك الله فيك

    شكرا وبارك الله فيك

    0 Not allowed!



  
صفحة 1 من 2 12 الأخيرةالأخيرة
الكلمات الدلالية لهذا الموضوع

عرض سحابة الكلمة الدلالية

RSS RSS 2.0 XML MAP HTML