دورات هندسية

 

 

التآكل Corrosion

صفحة 1 من 3 12 3 الأخيرةالأخيرة
النتائج 1 إلى 10 من 25
  1. [1]
    محمد حسن نصر
    محمد حسن نصر غير متواجد حالياً

    عضو تحرير المجلة

    تاريخ التسجيل: Dec 2006
    المشاركات: 283
    Thumbs Up
    Received: 7
    Given: 0

    التآكل Corrosion

    التآكل CORROSION

    يعرف التأكل بعد أشكل هي إنحلال المعدن بسبب تفاعله مع الوسط الذي يتعرض له أو فشل المعدن بأي سبب غير السبب الميكانيكي البحث ، أو يعرف أحياناً بأنه العملية العكسية لإستخلاص المعدن من خاماته والتأكل فشل يصيب سطح المعدن ينتج بسبب عوامل كيميائية أو بسبب عوامل كيميائية تساعدها عوامل ميكانيكية متوفرة في الوسط الذي يعمل فيه المعدن.

    وهناك نوع آخر في الفشل السطحي سببه ميكانيكي بحث يدعى البلى Wear والذي ينتج بسبب الاحتكاك بين سطح المعدن وتحت تأثير الجهود الخارجية .


    والأمثلة عديدة على التىكل منها صدأ هيكل السيارة وعلب المواد الغذائية والصفائح والمقاطع الفولاذية وتأكل الأنابيب المدفونة في التربة ، وهناك أمثلة أخرى على تآكل أجزاء معدنية عديدة تتعرض إلى أوساط صناعية مثل الأحماض والقواعد والمياه المالحة وما إلى غير ذلك .

    إن الأضرار التي يسببها الفشل السطحي بسبب التأكل عديدة وجميعها ذات مردود إقتصادي سيء ، ومن هذه الاضرار :

    1. تغير الابعاد وفقدان الخواص الميكانيكية : يؤدي التأكل إلى فقدان الوزن بسبب انحلال المعدن وبالتالي إلى تغير أبعاده ، لذلك تعطى في الغالب بعض السماحات للتأكل ( Corrosion Allowance ) عند وجوده وعند التصميم وتكون هذه السماحات أكبر سمكاً في الأوساط التي يكون فيها معدلات التآكل عالية منها في الأوساط التي يكون فيها معدلات التآكل منخفضة . ولتغير أبعاد القطعة المعدنية بسبب التآكل تأثير في الخواص الميكانيكية ، حيث تقل قابليتها لتحمل الأحمال الخارجية ، أي تزداد قابليتهاا للتشويه اللدن (Plastic Deformation ) والتشويه المرن Elastic Deformation .

    إن إستخدام المعدن في أوساط مساعدة على التآكل يودي إلى انخفاض قيم العديد من الخواص الميكانيكية وخصوصاً مقاومة المعدن للكلال ( Fatigue Strength ) ونشوء التشققات (Cracks) التي تؤدي إلى حصول الكسر الهش السريع (Fast Fracture ) .

    2. المظهرر : يتأثر مظهر المعدن بدرجة كبيرة عند إصابته بالتآكل حيث يظهر المعدن دائماً بمظهر سيىء . لذا يجب استخدام معادن مقاومة للتآكل الجوي مثل الألمنيوم أو الفولاذ المقاوم للصدأ بلاً من الفولاذ الكربوني ، كمواد بناْ ظاهرية مثل مقاطع الشبابيك ومواد وخصوصاً في واجهات الأبنية الخارجية ويعزى المظهر الحسن لهذه المواد إلى مقاومتها للتآكل الجوي . أما المعدن ذات المقاومة الضعيفة للتآكل فإنها تطلى بأنواع الطلاء المختلفة لتحسين مظهرها من خلال الحد من تآكلها .

    3. الأضرار الإقتصادية بسبب الإجراءات الوقائية : إن الأضرار الإقتصادية الناتجة عن التأكل عديدة ومهمة ، حيث يسبب هذا الفشل في كثير من الأحيان توقف المصانع عن العمل توقف غير مبرمج ، وما يوافق ذلك من كلف إقتصادية إضافية غير متوقعة . كذلك فإن حصول التآكل يؤدي إلى ارتفاع كلف الصيانة الدورية حيث يتطلب في كثير من الحالات تبديل الجزء المعدني التالف بجزء جديد آخر .وبهذا الخصوص يكون بالامكان أحياناً توفير بعض المبالغ عند اختيار مادة معدنية ذات مقاومة تآكل أعلى لتصنيع هذا الجزء التالف . وتتوفر العديد من الأمثلة التي تشير إلى أن اختيار مادة عالية التكاليف نسبياً ، ولكنها ذات مقاومة جيدة للتأكل من الناحية الإقتصادية أفضل من استخدام مادة معينة أرخص ثمناً ولنها تتعرض للتلف السريع بسبب التأكل ، مما يتطلب عندئذ تغييره بصورة دورية وفي كلتا الحالتين يلاحظ بأن التآكل يسبب أضراراً إقتصادية بسبب زيادة التكاليف . كما أن الإجراءات الوقائية للحد من التآكل تدخل ضمن كلف التشغيل والصيانة .

    إن التآكل يؤدي أحياناً إلى حدوث فشل غير متوقع في الأجزاء المعدنية في المصنع وهنا تكمن أساساً خطورة مشكلة التآكل ، حيث أن حودث الفشل بصورة مفاجئة قد يؤدي إلى حصول أضرار كبيرة أكبر من تلك التي يسببها التآكل المتوقع حصوله . وفي هذا المضمار يجب الوقوف بدقة على معدلات التآكل في الأجزاء المعدنية أثناء سير عملية التصنيع وذلك عن طريق القياسات المستمرة والدورية لمعدلات التآكل والفحص المستمر للقطع المعدنية لإتخاذ الإجراءات الوقائية قبل وصول درجة التآكل إلى الحد الذي يسبب توقف المصنع عن العمل أو التأثير في سير العملية التصنيعية .

    4. تلوث المنتجات : إن نواتج التأكل تؤدي إلى تغيير الطبيعة الكيميائية للوسط ، أي تلوثه وفي الغالب يكون ذلك غير مرغوب فيه حيث أن المتطلبات التجارية هي الحصول على منتج نقي ذي مواصفات محددة وخالي من التلوث .والأمثلة على ذلك عديدة منها تلوث المنتجات الغذائية المعلبة بسبب حصول درجة بسيطة في التآكل في العلبة التي تحفظ فيها تلك المادة الغذائية . وعلى ضوء ذلك فإن عمر القطعة المعدنية أو الجهاز ليس هو العامل الأساسي في تحديد فترة الفشل ، فمثلا من الممكن في بعض الأحوال أن نستخدم لغرض ما الفولاذ الإعتيادي ولفترة زمنية طويلة بدون وصول التأكل إلى درجة كبيرة ومع نجد أن استخدام مواد أعلى كلفة مثل الفولاذ المقاوم للصدأهو الأكثر شيوعاً ، ذلك لأن الفولاذ الإعتيادي يلوث المنتوج بعدإستخدامه لفترة وجيزة نسبياً بسبب تآكله خلال هذ الفترة حتى ولو بدرجة بسيطة وعندئذ لا يكون صالحاً للإستعمال .

    5. فقدان السلامة : يؤدي التآكل أحياناً أو في كثير من الأحيان إلى حصول كوارث إذا لم تتخذ الإجراءات الواقائية الكفيلة بإيقافه أو الحد منه فمثلاً التعامل مع المواد الخطرة مثل الغازات السامة وحامض الهيدروفلوريك والأحماض المركزة مثل حامض الكبريتيك والنيتريك والمواد القابلة اللإشتعال والمواد المشعة والمواد الكيميائية في درجات حرارة عالية وعند ضغط عالي يتطلب إستعمال مواد معدنية معينة لا تتأكل بدرجة كبيرة في مثل هذه الظروف . فمثلاً قد يؤدي حصول تأكل إجهادي ( Stress Corrosion ) في الجدار المعدني الذي يفصل الوقود عن المؤكسدات في الصاروخ إلى الخلط المبكر بين هذين الوسطين وبالتالي إلى خسارة إقتصادية وبشرية ، وفي كثير من الأحيان يؤدي حصول تآكل في جزء معدني صغير إلى انهيا أوسقوط منشأ كامل ، وقد تسبب نواتج التآكل أحياناً إلى تحول مواد غير مضرة إلى مواد متفجرة .

    وفي هذا المجال هناك العديد من اعتبارات السلامة الصحية مثل تلوث ماء الشرب بسبب تآكل الأنابيب أو خزانات المياه وكذلك يلعب التآكل دوراً مهماً ورئيسياً في اختيار نوع المواد المعدنية التي تصنع منها الأجزاء المعدنية التي تستخدم داخل جسم الإنسان مثل مفاصل الورك ( Hip Joints) والصفائح الطبية وصمامات القلب وغير ذلك .




    منقول


  2. [2]
    م. سامر هاني
    م. سامر هاني غير متواجد حالياً
    عضو فعال
    الصورة الرمزية م. سامر هاني


    تاريخ التسجيل: May 2006
    المشاركات: 55
    Thumbs Up
    Received: 6
    Given: 0
    جزاك الله خيرا على هذا المجهود الرائع

    0 Not allowed!



  3. [3]
    محمد حسن نصر
    محمد حسن نصر غير متواجد حالياً
    عضو تحرير المجلة


    تاريخ التسجيل: Dec 2006
    المشاركات: 283
    Thumbs Up
    Received: 7
    Given: 0

    تآكل المعادن والطرق المستخدمة للتصدي له

    تآكل المعادن والطرق المستخدمة للتصدي له

    للدكتور / سيف الدين مصطفى أحمد محمد

    يعرف التآكل بأنه انهيار المنشآت الفلزية كنتيجة لتفاعلها مع الجو المحيط.
    إن الفلزات تستخدم في الحضارة الحديثة لتصنيع العديد من الأشياء سواء كانت صغيرة مثل شفرة الحلاقة مثلا او كانت كبيرة مثل الأنابيب والهياكل وغيرها.
    إن التآكل من العوامل بالغة الأهمية في الصناعات الكيماوية ، حيث أنه السبب الرئيسي للكثير من المتاعب التي تجابه عمليات التشغيل في خطوط الأنتاج لتلك الصناعات وهو غالبا المسؤول عن الأعطال وتوقف الأنتاج ، ولكن التآكل ليس لغزا غير مفهوم حيث أن للتآكل شواهد لا تغيب عن بصر أحد فلا يطالعنا يوم دون أن نراه يستشري في المنشآت الفلزية بجد ونشاط ، ويجب أن يكون معلوما أن التآكل هي عملية تلقائية طبيعية يتم فيها إعادة الفلزات من صورتها الأنتقالية الحرة إلى صورها الثابتة ( الأتحادية ، والتي كانت متواجدة عليها أصلا في الطبيعة قبل إستخلاصها) ، أي أن ألتآكل هو الطريق اللذي تستعيد به الطبيعة ما اغتصبه منها الأنسان من فلزات كذالك يكون من الواضح أنه ليس من العملي محاولة إيقاف التآكل بصفة نهائية ، وأن دور كل متصدي لعملية التآكل يتلخص في محاولة الحد من معدل وقوعه.
    وعادة يفضل دراسة هذه الأجراءات وتلك السبل في مرحلة التصميم وقبل بداية مرحلة التشييد وعلى الرغم من ذالك فإن مشكلة التآكل سوف تظهر من جديد عندما يبدأ خط الأنتاج في مرحلة التشغيل وعلى ذالك فإن كل مهتم بالتآكل لا بد أن تكون لديه من المعلومات الأساسية ما يمكنه من ملاحظة كيفية حدوثه وكيف يمكن قياس معدل وقوعه والأجهزة اللازمة لذالك وطرق فحص العينات.
    ولعل من الواجب الآن إعادة التأكيد مرة أخرى على أن كافة الفلزات والسبائك معرضة لعملية التآكل ولا توجد مادة بعينها تكون مناسبة لكافة التطبيقات والأستخدامات وفي منأى عن التآكل ، فعلى سبيل المثال فلز الذهب والمعروف بمقاومته المتميزة للتآكل الجوي نجد أنه سريع التآكل والذوبان إذا ما تلامس مع الزئبق عند درجات الحرارة الأعتيادية ، وعلى العكس من ذالك نجد أن فلز الحديد لا يتأثر بفعل الزئبق ولكنه سرعان ما يصدأ في الهواء الجوي ولكن ولحسن الحظ يوجد عادة العديد من الفلزات والسبائك الفلزية التي تستطيع أن تؤدي عملها بنجاح في أوساط محددة.
    أيضا فإن هناك العديد من الطرق المتوفرة والمعروفة الآن والتي يمكن بواسطتها السيطرة على التآكل وتقليص حجم المشكلة وسوف نشرح بعضها في هذه الحلقة العلمية.
    ولكن قبل الدخول في ذلك لنذكر أهم المساوئ الأقتصادية لعملية التآكل:
    1- ضرورة استبدال الوحدات والمعدات المتآكلة بأخرى سليمة ، وما يصاحب ذالك من فقد العديد من ساعات الأنتاج اضافة إلى تكاليف الأستبدال.
    2- فرط التصميم أي استخدام مزيد من مواد الأنشاء والتشييد عما هو مطلوب لتحمل الأجهادات الميكانيكية ، تحسبا من عملية التآكل وما يتبع ذالك من زيادة في كمية مواد الأنشاء والتشييد مما يؤدي الى ارتفاع تكاليف الأجهزة والوحدات كما يتطلب ذلك إقامة أساسات خاصة كي تتحمل هذه الوحدات الثقيلة وهذه بدورها تكون عالية التكاليف.
    3- ضرورة تطبيق الصيانة الدورية وهذا يتطلب تكاليف مستمرة.
    4- إيقاف الوحدات الصناعية بصفة دورية لأجراء الصيانات عليها.
    5- تداخل نواتج عملية التآكل مع المنتج الرئيسي مما يؤدي إلى نقص في قيمة المنتج النهائي.
    6- تعرض الوحدات المجاورة للدمار نتيجة انهيار الوحدات المتآكلة.
    أما المساوئ الأجتماعية فنلخصها فيما يلي:
    1- إن الأنهيار المفاجئ للوحدات الصناعية والمنشآت بفعل التآكل قد يتسبب في اشتعال النيران وحدوث الحرائق ووقوع الأنفجارات وإطلاق الأبخرة والمواد السامة مما قد يؤدي إلى وقوع العديد من الأصابات والوفيات.
    2- إن تسرب المنتجات من الوحدات المتآكلة يؤدي إلى تلوث البيئة وتعرض الصحة العامة للخطر.
    3- إن اعادة بناء وتشييد وحدات جديدة بدلا من المتآكلة يستوجب استنفاذ المصادر الطبيعية لهذه الفلزات كما يتطلب استهلاك كميات كبيرة من الوقود لتصليح هذه الوحدات.
    نلاحظ أن كلا من المساوئ الأجتماعية التي ذكرناها لها انعكاسات اقتصادية أيضا.
    لنتعرف الآن على صور التآكل
    يحدث التآكل في صور عديدة ومختلفة وتنقسم هذه الصور كما يلي:
    1- حسب طبيعة الوسط الآكل: حيث ينقسم التآكل في هذه الحالة إلى مبتل وجاف ، وحسب التسمية فأنه من الضروري تواجد سوائل أو رطوبة لكي يحدث التآكل الرطب بينما لا يستوجب الجاف ذالك وعادة يحدث التآكل الجاف عند درجات الحرارة العالية أي بين الفلزات والغازات كما يحدث في بعض المداخن.
    2- حسب ميكانيكية عملية التفاعل: أي حسب المسلك اللذي تسلكه عملية التآكل وبهذا الخصوص ينقسم التآكل إلى تآكل كيميائي وإلى تآكل كهروكيميائي.
    3- حسب المظهر للفلز المتآكل: وفي هذه الحالة يتم تقسيم التآكل إلى تآكل متجانس يحدث عند السطح المتآكل كله وتآكل موضعي أو مركز وفي هذه الحالة يتركز في مساحات محددة.
    إن التقسيم الأخير أي حسب المظهر سوف يكون أكثر فائدة في تعرفنا على أساسيات التآكل ولذلك سوف نستخدم هذا التصنيف خلال هذه الحلقة العلمية للتعرف على أساسيات التآكل ، ولكن يجب علينا التمييز بين نوعين من التآكل الموضعي أحدهما يسمى بالتآكل الماكروسكوبي حيث يمكن رؤية أثر التآكل الموضعي بالعين المجردة بينما الآخر يسمى بالتآكل الميكروسكوبي والذي لا يمكن رؤية آثاره الا بالمجهر ومن أنواعه التآكل بين الحبيبات والتآكل التشققي الأجهادي.
    أما بالنسبة للتآكل الماكروسكوبي والذي يرى بالعين المجردة فمن أنواعه:
    1- التآكل الجلفاني 2- تآكل البري 3- التآكل التشققي 4- التآكل التنقري 5- التآكل التقشري 6- تآكل النض الأختياري
    سوف نكتفي في هذه الحلقة العلمية بالتعرف على تآكل التنقر أما لمزيد من المعلومات عن الأنواع الأخرى من انواع التآكل فيمكنكم الأطلاع عليها عبر موقع الكلية على شبكة الأنترنت.

    يقصد بتآكل التنقر بأنه تكون نقر عميقة على سطح غير متآكل ويمكن لهذه النقر أن تتخذ أشكالا عدة حيث يكون شكل النقر هو السبب الأساسي المسؤول عن استمرار نموها ، وللحد من تآكل النقر فإن السطح يجب أن يكون متجانسا ونظيفا باستمرار.
    فعلى سبيل المثال فإن السطح الفلزي النقي والمتجانس والمصقول جيدا يكون أكثر مقاومة لهذا النوع من التآكل عن ذالك السطح الذي يحتوي على بعض العيوب أو يكون خشنا وعادة ما تكون عملية تكون النقر بطيئة حيث تتطلب عدة شهور حتى يمكن رؤيتها ، لكنها دائما ما تسبب الأنهيارات الفلزية دون سابق إنذار حيث أن الحجم الصغير للنقرة وكمية الفلز الصغيرة التي يجب إذابتها حتى تتكون يجعل من العسير اكتشاف هذا النوع من التآكل في مراحله الأولى ويعد إختبار مواد الأنشاء والتشييد والتصميم بحيث تبقى السطوح دائما نظيفة هما أحسن الطرق وأكثرها أمانا لتجنب هذا النوع من التآكل.

    لنتعرف الآن على طرق السيطرة على التآكل

    أولا: السيطرة على العمليات الأنتاجية للحد من التآكل: حيث يمكن تحقيق الكثير من التوفير في تكاليف الأنتاج عن طريق تقليص معدل حدوث التآكل الذي يحدث نتيجة لفعل الكيماويات وتغير الخواص الطبيعية للمتغيرات والظروف الموجودة داخل الخط الأنتاجي.
    وهناك اربع طرق مختلفة للتغلب على التآكل وهي:-
    1- السيطرة على المتغيرات الخاصة بالعملية الأنتاجية.
    2- التصميم الهندسي الجيد.
    3- تطبيق الحمايات في مجابهة التآكل.
    4- الأختبار الجيد لمواد الأنشاء والتشييد.
    ويمكن استخدام كل هذه الطرق في آن واحد في المصانع الكيماوية.

    ثانيا: التصدي للتآكل بالتصميم الهندسي الجيد: حيث أن الكثير من كلفة التشغيل يمكن توفيرها في المصانع الكيماوية بصفة خاصة بالتصدي للتآكل خلال خطوة تصميم خطوط الأنتاج والوحدات الصناعية وقبل خطوة التشييد والتنفيذ.

    ثالثا: التصدي للتآكل بالحمايات الكاثودية والآنودية: الحماية الكاثودية والحماية الآنودية طرق للتخلص أو تقليص معدل التآكل للمنشآت الفلزية وهي بالتالي تحد من تكاليف الصيانة والأستبدال وتسمح كذلك باستخدام مواد أرخص للأنشاء والتشييد، فمن المعروف أنه عندما يتآكل فلز يمر تيار كهربائي بين المساحات الآنودية والمساحات الكاثودية المتواجدة على سطح الفلز ، وأنه كلما زادت قيمة هذا التيار كلما زاد معدل التآكل ، فإذا استخدمنا دائرة كهربائية خارجية فإنه يمكننا فرض تيار إضافي على الفلز ومن ثم نتمكن من تغيير السيطرة على معدل التآكل الخاص به ، ونحن نستطيع أن نطبق تيار معاكس لأيقاف التآكل تماما ( كما هو الحال في الحماية الكاثودية) أو كماهو الحال في بعض الحالات فإننا يمكن أن نضبط من جهد الفلز المتآكل بحيث يبقى الفلز معرضا للتآكل ولكن بمعدل أقل لأنه يكون على هذه الصورة سلبيا ( كما هو الحال في الحماية الآنودية) ، وكلا الطريقتين شائعتين تماما في التطبيقات التجارية والصناعية كطرق ناجحة للحماية من التآكل.

    رابعا: التصدي للتآكل الفلزي بالتغطيات: إن التغطيات الفلزية والغير عضوية هي من التغطيات الشائعة للسيطرة على التآكل ويتوقف اختيار نوع التغطية على كل من الوسط الآكل وطريقة التطبيق ونوع الفلز المراد تغطيته إضافة إلى نوع الترابط بين الفلز المغطى والتغطية نفسها.
    إن التغطيات هي أكثر الطرق المستخدمة شيوعا للتصدي لعملية التآكل الفلزي حيث يتلخص عمل التغطيات في الحد من عملية التآكل الفلزي في أنها تقوم بعزل الفلز عن الوسط الآكل كلية أو أنها تؤخر حدوث التفاعل بين كل من الفلز المراد تغطيته والوسط الآكل.
    وحاليا توجد المئات من أنواع التغطيات والكثير منها عبارة عن خلائط من مكونات مختلفة وبنسب مختلفة لتحقيق خصائص معينة وتباع تحت أسماء تجارية مختلفة أيضا.
    وتصنف التغطيات إلى ثلاثة أنواع مختلفة على النحو التالي:
    1- التغطيات الفلزية : ومن أشهرها الرش الفلزي ، التكسية ، الطلاء الكهروكيميائي
    2- التغطيات غير العضوية : حيث يتم تغطية الفلزات بطبقة من الخزف أو الزجاج عن طريق صهرها على سطوح الفلزات بقصد حمايتها من التآكل.
    3- التغطيات العضوية.

    وأخيرا يمكن التصدي للتآكل بالأختيار الجيد لمواد الأنشاء والتشييد: حيث أنه من وجهة النظر الفنية البحتة فإن مشكلة التآكل يكمن في استخدام مواد للأنشاء والتشييد أكثر مقاومة له ، وفي كثير من الأحيان يعد هذا الأتجاه بديل اقتصادي عن استخدام مواد أقل مقاومة للتآكل مع تطبيق طرق الحماية المختلفة.

    وفي الختام نذكر بأن تآكل المعادن يسبب خسائر جسيمة في الأقتصاد العالمي تقدر بالمليارات سنويا ، إذ يدمر كمية ضخمة من المنشآت والماكينات المعدنية ، لذلك يجب التصدي له بالطرق التي ذكرناها سابقا.

    0 Not allowed!



  4. [4]
    محمد حسن نصر
    محمد حسن نصر غير متواجد حالياً
    عضو تحرير المجلة


    تاريخ التسجيل: Dec 2006
    المشاركات: 283
    Thumbs Up
    Received: 7
    Given: 0

    حساب معدل التآكل بطريقة فقدان الوزن

    حساب معدل التآكل بطريقة فقدان الوزن

    Determination of Corrosion Rate by Weight Loss Method



    مقدمة:

    معدل التآكل لمعدن معين في وسط معين هو مقدار الوزن المفقود للمعدن في وحدة مساحة في وحدة زمن في ذلك الوسط. ويمكن حساب معدل التآكل مخبريا بتعريض قطعة معدنية ذات سطح نظيف إلى الوسط المراد حساب معدل التآكل فيه لفترة زمنية معينة ثم حساب الوزن الذي فقدته خلال تلك الفترة الزمنية, وباستخدام القانون التالي:


    معدل التآكل = الوزن المفقود/ المساحة السطحيةx الزمن


    إن قيمة معدل التآكل المستخرجة بهذه الطريقة تستخدم للتعبير عن مدى مقاومة المعدن للتآكل العام (General Corrosion) حيث أن التنابس عكسي بين قيمة معدل التآكل ومقاومة المعدن للتآكل.

    إن الوحدات الأساسية المستخدمة للتعبير عن معدل التآكل هي: mg/dm2/day أي أن يكون الوزن المفقود مقاسا بالميليغرامات والمساحة السطحية بالديسيميتر المربع والزمن بالأيام, ويرمز لهذه الوحدة اختصارا ب (mdd). كذلك يمكن أن يعبر عن معدل التآكل بمقدار العمق المفقود خلال وحدة زمن, أي معدل تغلغل التآكل في المعدن. وفي هذه الحالة تكون الوحدة الرئيسية المستخدمة هي mils/year أو mpy أي مل لكل سنة. والمل هنا هو 0.001 من الإنش والزمن هنا بالسنة. وللتعبير عن معدل التآكل بالعمق المفقود أفضلية على التعبير الأول من الناحية الهندسية, حيث أن هذا التعبير يكون له دلالة مباشرة أحيانا على مقدار النقصان في سمك القطعة المعدنية أثنا تعرضها للتآكل العام ومن ثم تحديد عمرها الإفتراضي. ويمكن معرفة التآكل مقاسا بإحدى هاتين الوحدتين إذا تم معرفة الأخرى حسب المعادلة التالية:

    R (mpy)= 1.44 R (mdd)/ S.G.

    حيث أن:
    R هو معدل التآكل
    وS.G. هي الكثافة النوعية للمعدن


    إن معدل التآكل للقطعة المعدنية المعرضة لوسط معين يكون غير ثابت في كثير من الأحيان خلال فترة تعرض القطعة لهذا الوسط, وأسباب ذلك عديدة, منها التغير المستمر لظروف الوسط وتأثير نواتج التآكل التي قد تزيد أو تقلل من معدل التآكل. لذا فإنه لغرض حساب هذا المعدل يجب أن تكون فترة تعريض المعدن لوسط التآكل فترة زمنية طويلة نسبيا long exposure test وفي الطرق القياسية المستخدمة لهذا الغرض يعرض النموذج (المعدن) غالبا فترة زمنة مقدارها 48 ساعة لخمسة مرات, ويستخدم بعد كل مرة سائل جديد.


    خطوات العمل:

    1- اقطع نموذجا coupon بحجم مناسب 20mm x20mm مثلا من صفيحة من الفولاذ متوسط الكربون Mild Carbon Steel ثم اثقبه من أحد زواياه لغرض تعليقه. ثم نظف سطحه وذلك بإزالة الأكاسيد والطلاء – إن وجد – باستعمال ورق تجليخ (ورق صنفرة) خشن Sand Paper ثم ناعم ثم صقله بعد ذلك وغسله تحت الماء الجاري. ثم نظفه بوساطة مذيبات عضوية مثل الأسيتون Acetone وذلك لإزالة المواد العضوية والزيتية العالقة, ثم تجفيفه.
    2- زن النموذج باستخدام ميزان إلكتروني حساس إلى أربع أرقام عشرية بعد الفاصلة أي بدقة 0.1 mg وسجل الوزن الابتدائي Wo ثم قس أبعاده واحسب المساحة السطحية. (ولا تنس أن للقطعة وجهان).
    3- عرض النموذج بكامله إلى وسط تآكل هو 10% HCl وذلك بتعليقه بخيط عازل وغمسه بالكامل في المحلول. الفترة الزمنية للتعريض هي 3 دقائق (لأن الحامض مركز). ثم نظف سطح النموذج بالماء الجاري مع استعمال فرشاة مطاطية لإزالة المواد العالقة. ثم اغسل النموذج بالأسيتون ثم جففه وزنه وسجل الوزن الجديد W1 .
    4- أعد الخطوة 3 السابقة أربع مرات باستعمال النموذج نفسه وباستخدام محلول جديد في كل مرة. ثم احسب مقدار الوزن الجديد في كل مرة ( W2, W3, W4, W5). ارسم العلاقة البيانية بين الوزن المفقود ∆W والزمن t ومن هذه العلاقة جد معدل التآكل مقاسا ب mdd و mpy. لاحظ نقصان معدل التآكل بزيادة الزمن.
    5- أعد نفس التجربة ولكن باستخدام محلول ملحي 3% NaCl . واجعل فترة التعريض هي 15 دقيقة في كل مرة. لاظ الفرق بين معدلي التآكل في كلتا الحالتين.
    6- أعد الخطوة 5 أعلاه ولكن بتهويه المحلول هذه المرة Aereation وذلك بضخ هواء في المحلول الملحي. لاحظ الفرق أيضا.
    7- ناقش النتائج التي حصلت عليها.

    0 Not allowed!



  5. [5]
    medo66800
    medo66800 غير متواجد حالياً
    عضو


    تاريخ التسجيل: Aug 2007
    المشاركات: 43
    Thumbs Up
    Received: 0
    Given: 0
    اشكرك بشدة
    وارجو منك المزيد عن هذا الموضوع

    0 Not allowed!



  6. [6]
    medo66800
    medo66800 غير متواجد حالياً
    عضو


    تاريخ التسجيل: Aug 2007
    المشاركات: 43
    Thumbs Up
    Received: 0
    Given: 0
    الاخ محمد حسن اشكرك على كل مواضيعك الممتازة
    ومستنيين منك اكتر

    0 Not allowed!



  7. [7]
    محمد حسن نصر
    محمد حسن نصر غير متواجد حالياً
    عضو تحرير المجلة


    تاريخ التسجيل: Dec 2006
    المشاركات: 283
    Thumbs Up
    Received: 7
    Given: 0
    الحماية الكاثودية

    الحماية الكاثودية اجراء يتم اتباعه لحمايةالهياكل المعدنية الحديدية والانابيب من التآكل جراء تعرض سطوحها الى تماس مع التربة او مع الماء.

    لماذا يحدث التآكل؟

    تتآكل السطوح الحديدية للهياكل المعدنية والانابيب والمعدات الحديدية عموما عند تماس سطوحها بالتربة او الماء نتيجة لحدوث تفاعلات كيمياوية مصحوبة بسريان الالكترونات (اي سريان للتيار الكهربائي) لذا يمكن القول بأن عملية التآكل هي عملية كهروكيمياوية تؤدي بالنتيجة الى فقدان اجزاء من معدن الحديد وبالتالي تآكل السطح المعرض للتربة او الماء او حتى المعرض للجو الرطب حيث تتكون خلية كلفانية.

    الخلية الكلفانية

    لو قمنا بغمس قطبين من معدنين مختلفين مثل الزنك و النحاس مثلا في محلول موصل للكهرباء وربطنا بينهما بسلك فأنه يتولد عن ذلك تيار كهربائي يسري من الزنك الى النحاس داخل المحلول ويكمل دورته خلال السلك الواصل بينهما. تعرف هذه الخلية الكهربائية باسم خلية كلفاني نسبة الى مكتشفها العالم الإيطالي كلفاني. يسمى القطب الذي يخرج منه التيار الى المحلول "أنود"، ويسمى القطب الذي يستقبل التيار "كاثود"، ويترتب على سريان التيار في الخلية حدوث تأكل على الأنود بينما يبقى الكاثود سليما ويترسب على سطحه طبقة خفيفة من الهيدروجين لو بقيت على سطحه لأحدثت استقطابا في الخلية تتلاشى معه شدة التيار في الخلية ومن ثم تتوقف عملية التآكل ولكن تحدث عند الكاثود تفاعلات كيمياوية تمنع مثل هذا الاستقطاب فيستمر سريان التيار في الخلية وتستمر عملية التآكل. تتوقف عملية التآكل على الأنود على ثلاثة عوامل: • نوع مادة الأنود. • شدة التيار. • المدة التي يستمر فيها سريان التيار. مثلا – يتآكل الحديد بمعدل (9) كيلو غرام إذا سرى منه أمبير واحد لمدة عام.





    كيف يحدث التآكل؟

    ان المسبب الاساس للتآكل هو تكون خلايا للتآكل Corrosion Cells تنتج عن وجود فرق جهد كهربائي بين المناطق المختلفة للسطح المعدني. ان تكون هذا الفرق بالجهد يمكن ان يحدث لعدة اسباب منها: _ أختلاف خواص المعدن في مناطق مختلفة من الهيكل المعدني او خطوط الانابيب مثلا. - أختلاف خواص وتجانس التربة التي هي في تماس مع الهيكل المعدني وهذا يظهر بوضوح في حالة خطوط الانابيب ذات المسارات الطويلة. - أختلاف نسبة وجود الاكسجين في أماكن مختلفة من التربة وهذا يظهر في معابر الطرق والشوارع لخطوط الانابيب مقارنة بمسار الانبوب خارجها.

    وصف عملية التآكل
    يكون سريان الالكترونات من المنطقة الكاثودية Cathodic Area الى المنطقة الانودية Anodic Area من خلال التربة او الماء الحيط بالهيكل المعدني, ان اتجاه التيار الكهربائي يكون من المنطقة الانودية الى المنطقة الكاثودية خلال التربة او المحيط المائي (المحلول).
    الالكترونات التي تتولد نتيجة فقدان ذرات الحديد للاكترنات وتحويلها الى ايون الحديد الموجب.
    تتحد ايونات الحديد مع ايونات OH لينتج Ferric Hydroxide Fe(OH)3 وهو الصدأ الاعتيادي Rust.
    الاللكترونات الواصلة عبر المعدن الى الكاثود تتحد مع آيونات الهيدروجين الذي يتحرر عند الكاثود.
    يلاحظ ان الحديد يتم فقدانه من سطح الانود حيث يتحول باستمرار الى صدأ بينما ولايحدث ذلك على سطح الكاثود.

    كيف يمنع التآكل

    يمكن منع حدوث التآكل ان جعلنا سطح العدن بكامله كاثودآ بالنسبة لمحيطه ومن هنا جاءت تسمية الحماية الكاثودية.

    طرق مكافحة التآكل

    كل طرق مكافحة التآكل ترتكز على منع تسرب التيار الكهربائي من المنشآت الى ما يحيط بها من تربة أو ماء وفيما يلي الأساليب المتبعة لتحقيق ذلك:
    استخدام التغليف الجيد وتشمل الصبغ وهو عبارة عن عازل كهربائي يفصل بين المعدن و البيئة من حوله، من الخصائص الأساسية التي يجب أن تتوفر في التغليف الجيد هو أن يكون متواصلا وذو مقاومية عالية وجيد الالتصاق بالمعدن ولا يتأثر بالحرارة وأن تبلغ نفاذيته الى الدرجة التي لا تسمح بعبور الرطوبة من خلاله. وقد يكون على شكل أشرطة لاصقة أو بي في سي ملبس في المصنع وتتميز بفاعلية عالية.
    استخدام مانع للتفاعل الكيمياوي (Inhibitor) وهي مادة كيمياوية تضاف الى السوائل فتمنع التآكل على جدار الوعاء الذي يحتويها لأنها تحول دون حدوث التفاعلات الكيمياوية عند الأنود أو الكاثود أو كليهما وتوقف بالتالي مفعول خلايا التآكل كما أنها تترك طبقة خفيفة عازلة على جدار الوعاء. يضاف مانع التفاعل الكيمياوي الى السوائل بتركيز معين دوريا ويمكن استعمال هذا الأسلوب في آبار الحفر و المراجل ومنظومات المياه.
    استخدام مواد مقاومة للتآكل يعني ذلك اختيار المادة التي تقاوم التآكل في بيئة معينة على أن تكون ملائمة للظروف التشغيلية ومن المواد التي تستعمل لهذا الغرض هي الكروم والنيكل و والرصاص والقصدير والبلاستك و المطاط والسيراميك والكونكريت والألياف الزجاجية.
    معالجة المحيط (Environment Treatment) يقصد بهذا إحداث تغيرات في تركيب المحيط الملاصق للمعادن تمنع أو تقلل من التآكل عليها. أن التميز بين مانع التفاعل و معالجة المحيط غير واضح فوجود بيكاربونات الكالسيوم في الماء يرسب على جدار الوعاء الذي يحتويه طبقة من كربونات الكالسيوم تفصل بين الوعاء والماء فتحميه من التآكل ولكن بيكاربونات الكالسيوم لا تصنف في عداد مانعات التآكل. من الوسائل التي تستخدم في معالجة المحيط هو التخلص من الأوكسجين والرطوبة والأملاح المذابة والتحكم في درجة تركيز أيونات الهيدروجين.
    اعتماد التصميم الجيد وهو ما يتحاشى أو يقلل من احتمال حدوث خلايا تآكل ويسهل تطبيق وسائل مكافحة التآكل على المنشئات أو الكشف عليها. من الأمور التي يجب الحرص عليها تجنب الاتصال المباشر بين معدنين مختلفين وعدم وجود مصائد لتجمع الماء أو الغازات أو الهواء والتقليل ما أمكن من وجود الأجزاء المضغوطة.
    استخدام الحماية الكاثودية حيث أن التآكل في المعادن يقع في المنطقة الأنودية نتيجة تفريغ التيار الكهربائي منها الى البيئة من حولها مع بقاء المنطقة الكاثودية سليمة وخالية من التآكل. من الواضح أذن أن عملية التآكل تتوقف إذا أصبحت جميع أجزاء المعدن كاثودية ويمكن تحقيق ذلك باستخدام تيار كهربائي من مصدر خارجي يسري باتجاه مضاد لتيار خلايا التآكل وبكثافة كافية لتجعل من سطح المعدن بأكمله كاثودآ يستقيل التيار الكهربائي من البيئة التي حوله بدل أن يفرغه إليها ومن هنا جاء اصطلاح الحماية الكاثودية

    0 Not allowed!



  8. [8]
    المدرب نت
    المدرب نت غير متواجد حالياً
    انتظار


    تاريخ التسجيل: Apr 2007
    المشاركات: 17
    Thumbs Up
    Received: 0
    Given: 0
    شكراً لك يا بش مهندس محمد

    0 Not allowed!



  9. [9]
    محمد حسن نصر
    محمد حسن نصر غير متواجد حالياً
    عضو تحرير المجلة


    تاريخ التسجيل: Dec 2006
    المشاركات: 283
    Thumbs Up
    Received: 7
    Given: 0
    اشكركم على الاهتمام
    وارجو من من يمتلك اي معلومات عن ال CORROSION ارسالها للاهمية وشكرا

    0 Not allowed!



  10. [10]
    ابوعمر2005
    ابوعمر2005 غير متواجد حالياً
    جديد


    تاريخ التسجيل: Oct 2006
    المشاركات: 3
    Thumbs Up
    Received: 0
    Given: 0
    جزاك الله خيرا على هذا المجهود الرائع

    0 Not allowed!



  
صفحة 1 من 3 12 3 الأخيرةالأخيرة
الكلمات الدلالية لهذا الموضوع

عرض سحابة الكلمة الدلالية

RSS RSS 2.0 XML MAP HTML