دورات هندسية

 

 

محطات توليد الطاقه بانواعها المختلفه

النتائج 1 إلى 5 من 5
  1. [1]
    ahmed abisalama
    ahmed abisalama غير متواجد حالياً

    عضو فعال

    تاريخ التسجيل: Aug 2009
    المشاركات: 57
    Thumbs Up
    Received: 1
    Given: 0
  2. [2]
    د.محمد باشراحيل
    د.محمد باشراحيل غير متواجد حالياً
    إستشاري الملتقى
    الصورة الرمزية د.محمد باشراحيل


    تاريخ التسجيل: Mar 2009
    المشاركات: 7,042
    Thumbs Up
    Received: 127
    Given: 15

    Power Stations

    اقتباس المشاركة الأصلية كتبت بواسطة ahmed abisalama مشاهدة المشاركة
    نريد ان نعرف كل شىء عن...............

    محطات توليد الطاقه بانواعها المختلفه
    Power station

    From Wikipedia, the free encyclopedia


    Jump to: navigation, search
    For other uses, see Power station (disambiguation).
    "Power plant" redirects here. For other uses, see Power plant (disambiguation).

    The Susquehanna Steam Electric Station, a boiling water reactor.



    The Three Gorges Dam, a hydroelectric dam.


    A power station (also referred to as a generating station, power plant, or powerhouse) is an industrial facility for the generation of electric power.[1][2][3]
    Power plant is also used to refer to the engine in ships, aircraft and other large vehicles. Some prefer to use the term energy center because it more accurately describes what the plants do, which is the conversion of other forms of energy, like chemical energy, gravitational potential energy or heat energy into electrical energy. However, power plant is the most common term in the U.S., while elsewhere power station and power plant are both widely used, power station prevailing in many Commonwealth countries and especially in the United Kingdom.
    At the center of nearly all power stations is a generator, a rotating machine that converts mechanical energy into electrical energy by creating relative motion between a magnetic field and a conductor. The energy source harnessed to turn the generator varies widely. It depends chiefly on which fuels are easily available and on the types of technology that the power company has access to.
    *******s


    [hide]
    [edit] Thermal power stations


    Rotor of a modern steam turbine, used in power station.


    Main article: Thermal power station
    In thermal power stations, mechanical power is produced by a heat engine that transforms thermal energy, often from combustion of a fuel, into rotational energy. Most thermal power stations produce steam, and these are sometimes called steam power stations. Not all thermal energy can be transformed into mechanical power, according to the second law of thermodynamics. Therefore, there is always heat lost to the environment. If this loss is employed as useful heat, for industrial processes or district heating, the power plant is referred to as a cogeneration power plant or CHP (combined heat-and-power) plant. In countries where district heating is common, there are dedicated heat plants called heat-only boiler stations. An important class of power stations in the Middle East uses by-product heat for the desalination of water.

    [edit] Classification


    CHP plant in Warsaw, Poland.



    Geothermal power station in Iceland.



    Coal Power Station in Tampa, United States.


    Thermal power plants are classified by the type of fuel and the type of prime mover installed.

    [edit] By fuel

    [edit] By prime mover

    • Steam turbine plants use the dynamic pressure generated by expanding steam to turn the blades of a turbine. Almost all large non-hydro plants use this system.
    • Gas turbine plants use the dynamic pressure from flowing gases to directly operate the turbine. Natural-gas fuelled turbine plants can start rapidly and so are used to supply "peak" energy during periods of high demand, though at higher cost than base-loaded plants. These may be comparatively small units, and sometimes completely unmanned, being remotely operated. This type was pioneered by the UK, Princetown[5] being the world's first, commissioned in 1959.
    • Combined cycle plants have both a gas turbine fired by natural gas, and a steam boiler and steam turbine which use the exhaust gas from the gas turbine to produce electricity. This greatly increases the overall efficiency of the plant, and many new baseload power plants are combined cycle plants fired by natural gas.
    • Internal combustion Reciprocating engines are used to provide power for isolated communities and are frequently used for small cogeneration plants. Hospitals, office buildings, industrial plants, and other critical facilities also use them to provide backup power in case of a power outage. These are usually fuelled by diesel oil, heavy oil, natural gas and landfill gas.
    • Microturbines, Stirling engine and internal combustion reciprocating engines are low cost solutions for using opportunity fuels, such as landfill gas, digester gas from water treatment plants and waste gas from oil production.
    [edit] Cooling towers


    Cooling towers evaporating water at Ratcliffe Power Plant, United Kingdom.


    All thermal power plants produce waste heat as a byproduct of the useful electrical energy produced. Natural draft wet cooling towers at nuclear power plants and at some large thermal power plants are large hyperbolic chimney-like structures (as seen in the image at the left) that release the waste heat to the ambient atmosphere by the evaporation of water (lower left image). However, the mechanical induced-draft or forced-draft wet cooling towers (as seen in the image to the right) in many large thermal power plants, petroleum refineries, petrochemical plants, geothermal, biomass and waste to energy plants use fans to provide air movement upward through downcoming water and are not hyperbolic chimney-like structures. The induced or forced-draft cooling towers are rectangular, box-like structures filled with a material that enhances the contacting of the upflowing air and the downflowing water.[6][7]
    In desert areas a dry cooling tower or radiator may be necessary, since the cost of make-up water for evaporative cooling would be prohibitive. These have lower efficiency and higher energy consumption in fans than a wet, evaporative cooling tower.
    Where economically and environmentally possible, electric companies prefer to use cooling water from the ocean, or a lake or river, or a cooling pond, instead of a cooling tower. This type of cooling can save the cost of a cooling tower and may have lower energy costs for pumping cooling water through the plant's heat exchangers. However, the waste heat can cause the temperature of the water to rise detectably. Power plants using natural bodies of water for cooling must be designed to prevent intake of organisms into the cooling cycle. A further environmental impact would be organisms that adapt to the warmer plant water and may be injured if the plant shuts down in cold weather.
    In recent years, recycled wastewater, or grey water, has been used in cooling towers. The Calpine Riverside and the Calpine Fox power stations in Wisconsin as well as the Calpine Mankato power station in Minnesota are among these facilities.

    [edit] Other sources of energy

    Other power stations use the energy from wave or tidal motion , wind, sunlight or the energy of falling water, hydroelectricity. These types of energy sources are called renewable energy.

    A hydroelectric dam and plant on the Muskegon river in Michigan, United States.



    [edit] Hydroelectricity

    Main article: Hydroelectricity
    Hydroelectric dams impound a reservoir of water and release it through one or more water turbines to generate electricity.

    [edit] Pumped storage

    A pumped storage hydroelectric power plant is a net consumer of energy but decreases the price of electricity. Water is pumped to a high reservoir when the demand, and price, for electricity is low. During hours of peak demand, when the price of electricity is high, the stored water is released through turbines to produce electric power.

    [edit] Solar

    Main article: Solar power

    Nellis Solar Power Plant in the United States.


    A solar photovoltaic power plant uses photovoltaic cells to convert sunlight into direct current electricity using the photoelectric effect. This type of plant does not use rotating machines for energy conversion.
    Solar thermal power plants are another type of solar power plant. They use either parabolic troughs or heliostats to direct sunlight onto a pipe containing a heat transfer fluid, such as oil. The heated oil is then used to boil water into steam, which turns a turbine that drives an electrical generator. The central tower type of solar thermal power plant uses hundreds or thousands of mirrors, depending on size, to direct sunlight onto a receiver on top of a tower. Again, the heat is used to produce steam to turn turbines that drive electrical generators.
    There is yet another type of solar thermal electric plant. The sunlight strikes the bottom of a water pond, warming the lowest layer of water which is prevented from rising by a salt gradient. A Rankine cycle engine exploits the temperature difference in the water layers to produce electricity.
    Not many solar thermal electric plants have been built. Most of them can be found in the Mojave Desert of the United States although Sandia National Laboratory (again in the United States), Israel and Spain have also built a few plants.

    [edit] Wind

    Main article: Wind power

    Wind turbine in front of a thermal power station in Amsterdam, the Netherlands.


    Wind turbines can be used to generate electricity in areas with strong, steady winds. Many different designs have been used in the past, but almost all modern turbines being produced today use a three-bladed, upwind design. Grid-connected wind turbines now being built are much larger than the units installed during the 1970s, and so produce power more cheaply and reliably than earlier models. With larger turbines (on the order of one megawatt), the blades move more slowly than older, smaller, units, which makes them less visually distracting and safer for airborne animals. However, the old turbines can still be seen at some wind farms, particularly at Altamont Pass and Tehachapi Pass.

    [edit] Operations

    The power station operator has several duties in the electrical generating facility. Operators are responsible for the safety of the work crews that frequently do repairs on the mechanical and electrical equipment. They maintain the equipment with periodic inspections and log temperatures, pressures and other important information at regular intervals. Operators are responsible for starting and stopping the generators depending on need. They are able to synchronize and adjust the voltage output of the added generation with the running electrical system without upsetting the system. They must know the electrical and mechanical systems in order to troubleshoot problems in the facility and add to the reliability of the facility. Operators must be able to respond to an emergency and know the procedures in place to deal with it.

    [edit] See also

    0 Not allowed!



  3. [3]
    د.محمد باشراحيل
    د.محمد باشراحيل غير متواجد حالياً
    إستشاري الملتقى
    الصورة الرمزية د.محمد باشراحيل


    تاريخ التسجيل: Mar 2009
    المشاركات: 7,042
    Thumbs Up
    Received: 127
    Given: 15
    See also
    Energy portal
    Wikimedia Commons has media related to: Power plants
    [hide]
    v d e
    Electricity generationConceptsAvailability factor · Baseload · Black start · Capacity factor · Demand management · EROEI · Grid storage · Intermittency · Load following · Peak demand · Spark spread
    Sources
    Nonrenewable
    Coal · Fossil fuel power plant · Natural gas · Petroleum · Nuclear · Oil shale
    Renewable
    Biomass · Geothermal · Hydro · Ocean · Pumped hydro · Solar · Wind · Nuclear (Breeder)
    TechnologyAC power · Cogeneration · Combined cycle · Cooling tower · Induction generator · Micro CHP · Microgeneration · Rankine cycle · Virtual power plant
    DistributionDemand response · Distributed generation · Dynamic demand · Electricity distribution · Electrical grid · HVDC · Load control · Negawatts · Pylon · Smart grid · Super grid · TSO
    PoliciesCarbon offset · Coal phase out · Ecotax · Energy subsidies · Feed-in Tariff · Net metering · Pigovian tax · Renewable Energy Certificates · Renewable energy payments · Renewable energy policy
    Categories: Electricity distribution · Electricity economics · Power station technology · Portals: Energy · Sustainable development

    0 Not allowed!



  4. [4]
    ahmed abisalama
    ahmed abisalama غير متواجد حالياً
    عضو فعال


    تاريخ التسجيل: Aug 2009
    المشاركات: 57
    Thumbs Up
    Received: 1
    Given: 0
    جزاك الله خيرا
    لكن اريد المزيد

    0 Not allowed!



  5. [5]
    taygr_12345
    taygr_12345 غير متواجد حالياً
    عضو


    تاريخ التسجيل: Oct 2010
    المشاركات: 17
    Thumbs Up
    Received: 2
    Given: 0

    Lightbulb ايه رائى الساده الكرام فى طريقه جديده فى توليد الكهرباء ومتميزة

    []بسم الله الـرحــمان الــرحـيــم [*]بسم الله [*]بما انى لم اسجل هذا التعديل فى مركز البحوث فلا يمكننى شرح هذا اتعديل بالتفصيل بسبب عدم التسجيل واخذ برات الا ختراع حتا لا يتم الصطو عليه من اى احد بسهوله وضياع حقى فى التعديل وذهاب حقى هبآ وهذا هو السبب فى الغموض والتعديل يبنا على انشاء محطة تولي الطاقه الكهربية بتكلفه تعادل 1/100من تكلفة انشاء محطات التوليد الكهربائية وانها ليس لها اى اسباب سلبية على المجتمع او اخطار بيئيه ونها توفر من الاستهلاك التى تستهلكهو محطاط التوليد فى التشغيل حتا يمكننا عملها بصوره كاملة والتعديل الذى تم تصميمه يوفر ايضآ فى هذا الاستهلاك بنسبه كبيره جدآ بصوره لم يتخيلها احد قط وهذا التعديل اوسميه هبه من الله والحمد الله على كل شئ وعلى نعمت الاسلام والله الموفق والله المستعان [*]وكمان اخى الكريم التعديل الذى اقصده يلغى كل هذه الطرق بالكامل ان كانت ننووية او بخار او سد عالى ويصنع جهاز معين بطريقه سهله جدأ وغير مكلف ايضن ويجعل المولد يعمل بتقنيه عالية وتكلفة هذا الجهاز لا يتعدا عن 20000جنيه مصر ممكن ان يقل عن ذالك ولا يزيد قجط وليس لهو اى سباب جانبيه ولا اخطار على البيئه المحيطه وموفر فى التشغيل بنسبة صفر من ناحية الاستهلاك

    ميل / [email protected]

    0 Not allowed!



  
الكلمات الدلالية لهذا الموضوع

عرض سحابة الكلمة الدلالية

RSS RSS 2.0 XML MAP HTML