دورات هندسية

 

 

خزانات الهيدروجين:( Hydrogen Tanks )ضغطه وتخزينه واستخدامه

النتائج 1 إلى 7 من 7
  1. [1]
    fagrelsabah
    fagrelsabah غير متواجد حالياً

    عضو متميز جداً

    تاريخ التسجيل: Jun 2009
    المشاركات: 1,151
    Thumbs Up
    Received: 10
    Given: 0

    خزانات الهيدروجين:( Hydrogen Tanks )ضغطه وتخزينه واستخدامه

    السلام عليكم


    خزانات الهيدروجين Hydrogen Tanks )


    بما أن الهيدروجين من أخف العناصر و له وزن جزيئي صغير جداً فإن تسربه من الخزانات و الأنابيب يعتبر أسهل بكثير من تسرب الوقود التقليدي ، و على أية حال سواء كان استخدام هذا الهيدروجين كوقود للنقل أو لتوليد الطاقة فإنه من الضروري وجود طرق فعالة و قليلة التكلفة لتخزينه ، هذا بالإضافة إلى توافر وسيلة نقل الهيدروجين من المكان الذي ينتج فيه إلى مكان استخدامه . يمكن أن نقسم طرق تخزين الهيدروجين إلى ثلاثة طرق رئيسية : 1. بالشكل المضغوط 2. بالشكل السائل 3. بواسطة الرابطة الكيميائية

    [
    ] الهيدروجين المضغوط : ( Compressed hydrogen )


    أن عملية ضغط الهيدروجين مشابهة لعملية ضغط الغاز ، و لكن بما أن الهيدروجين أقل كثافة فإن الضواغط يجب أن تزود بموانع تسرب أكثر إحكاماً . يضغط الهيدروجين عادة إلى قيم تتراوح بين 200-25- bar و ذلك في حال تخزينه في خزانات اسطوانية الشكل ذات سعات صغيرة بحدود 50 liters ، هذه الخزانات التي تصنع عادة من الألمنيوم أو من مركبات الكربون- الغرافيت و يمكن استخدامها في مجالي المشاريع الصناعية الصغيرة و النقل على حد سواء . أما في حال كان استخدام الهيدروجين سيتم على نطاق أوسع فإن ضغوطاً بقيم تتراوح بين 500-600 bar يمكن أن تستعمل لهذه الغاية ، و على الرغم من ذلك فإننا نلاحظ أن بعض أكبر خزانات الهيدروجين المضغوط في العالم تستعمل ضغوطاً تتراوح فقط 12-16 bar .


    الهيدروجين السائل : Liquid Hydrogen


    تستعمل عملية تمييع الهيدروجين من أجل تقليل الحجم اللازم لتخزين كمية مفيدة من الهيدروجين ( خصوصاً في حالة المركبات ) ، و بما أن الهيدروجين لا يتميع حتى يصل إلى الدرجة -253 C أي أعلى من الصفر المطلق بـ 20 C فقط فإن هذه العملية تتصف بأنها طويلة و مركزة ، و قد تصل نسبة المفاقيد في الطاقة المختزنة في الهيدروجين إلى 40% ، و لكن مع ذلك فإن أفضلية الهيدروجين السائل تنبع من ارتفاع نسبة الطاقة الناتجة عن الكتلة فيه لتصل إلى ثلاثة أضعاف ما هي عليه في البنزين ، إنه أكثر أنواع الوقود كثافة ( تركيزاً ) طاقياً بعد الوقود النووي و هذا ما دفع إلى استخدامه في كل برامج الفضاء ، و في حال تخزين الهيدروجين السائل فإننا بحاجة إلى خزانات بعازلية أكبر.
    ] الهيدروجين ذو الترابط الكيميائي : Bonded hydrogen

    استخدام الهيدريدات المعدنية ( الصلبة ) و السائلة و مركبات الكربون الماصة هي الطرق الرئيسية المتبعة في عملية ربط الهيدروجين كيميائياً ، إنها أكثر الطرق أماناً حيث أنه لن يتحرر أي هيدروجين في حال حدوث طارئ ، و لكنها كبيرة الحجم و ثقيلة . الهيدريدات الصلبة ( المعدنية ) مثل مركبات FeTi ، Mg2Ni ، LaNi5 تستخدم لتخزين الهيدروجين عن طريق ربطه كيميائياً بسطح المادة ، و لضمان إمكانية تخزين حجوم كبيرة من الهيدروجين ، يتم استخدام حبيبات من المادة الأساس لزيادة سطوح الارتباط ، ثم يتم تشحين المادة ( تزويدها بالهيدروجين ) عن طريق حقن الهيدروجين بضغوط عالية داخل الخزان المملوء بالجزيئات الدقيقة من المادة ، إن عملية ارتباط الهيدروجين مع المادة تترافق مع إطلاقه لكميات من الحرارة ، و هذه الحرارة يجب أن نعيد تقديمها لفصل الهيدروجين عن المادة من جديد .
    و نلاحظ من المخطط التالي أنه كلما ازداد الضغط ازدادت كمية الهيدروجين المختزنة

    تبين الصورة المجهرية المجاورة ارتباط الهيدروجين مع البلورات

    أما الهيدريدات السائلة فهي مواد مثل الميتانول و السيكلوهيكسان ، و هي تشبه الوقود السائل من حيث سهولة النقل ، ولكن لإعادة تحرير الهيدروجين المختزن في داخلها يجب تبخيرها أو أكسدتها جزئياً . تقنية تكثيف الهيدروجين بالكربون تعتمد على تجاذب ذرات الكربون و الهيدروجين . حيث يتم ضخ الهيدروجين في الخزان مع حقن كربون نقي في نفس الوقت و بتأثير القوى الجزيئية المتبادلة بينهما يحصل الالتحام . هذه الطريقة مشابهة من حيث الكفاءة لتقنية الهيدريد المعدنية ، و لكنها محسنة كثيراً عند درجات الحرارة المنخفضة . • من بين الطرق السابقة الهيدريدات المعدنية هي الأفضل من حيث التكلفة و الأوزان . و لكن طرحت في الآونة الأخيرة تقنية جديدة تدعى بـ carbon nanofibre أو الألياف الكربونية الدقيقة ، و التي لديها القدرة على تخزين كمية من الهيدروجين تصل إلى 25-30 ضعفاً عن الهيدريدات المعدنية ، و هي نتيجة مذهلة إذا تم تحقيقها فعلاً ستحدث تحولاً جذرياً ( فمثلاً ستتمكن السيارات العاملة على الهيدروجين من السير 5000 Km بين محطات التزود بالوقود ) .
    تحويل الهيدروجين السائل إلى غاز :

    للحصول على تدفق غازي معين من الهيدروجين السائل يربط بعد الخزان مجموع كهربائية تحوي وشيعة تسخين مربوطة بنظام التحكم تقوم بتسخين الهيدروجين السائل و الحصول منه على التدفق الغازي المطلوب للدارة . هناك ظاهرة تبخر ذاتي للهيدروجين داخل الخزان مهما كان عزله ، تتراوح نسبتها 2-3 % . مواد صنع الخزانات و التصاميم : عادة ما يستخدم الألمنيوم لصناعة الخزانات ، و يكون الخزان بشكل اسطواني مع إطارات حلقية تحيط به و نهايتيه على شكل قباب .
    ==وحدة خلايا الوقود : ( fuel cell Unit )==
    سنستعرض هنا التطبيقات التي تم تنفيذها حتى الآن في هذا المجال على طريق الوصول إلى طاقة كهربائية باستطاعة عالية منتجة بهذه الطريقة .
    إن المرة الأولى التي وجدت خلايا الوقود الهيدروجيني طريقها فيها إلى الإستخدام العملي كان في مكوك الفضاء و ذلك لتزويده بالقدرة الكهربائية خاصة خلال مرحلة وصوله إلى مساره المحدد في الفضاء ، ففي هذه الفترة يصعب تزويده بالكهرباء الناتجة عن الطاقة الشمسية أو بأي محطة صغيرة أخرى على متنه لصعوبة التنفيذ ، فوجد أن خلايا الهيدروجين هي الحل الأمثل . انتقلت بعدها الفكرة لتطبق على وسائط النقل ، و وجدت أول انطلاقة واسعة لها في الدول الاسكندنافية و بريطانيا و اليابان و في مرحلة لاحقة الولايات المتحدة . ثم بدأ التفكير بتعميم التجربة على القطاع الصناعي الذي يحتاج استطاعات كبيرة ، فبدأت الدراسات للأنواع الموجودة من الخلايا و تطوير هذه الأنواع لزيادة استطاعتها ، و تطوير التقنيات المتصلة بذلك للوصول إلى الاستطاعة المطلوبة . أنواع خلايا الوقود الهيدروجيني و مقارنة بينها : 1. خلايا الوقود الحامضية الفوسفورية ( PAFC) : وهي النموذج الأول الذي استعمله مخترع التقنية William Grove و درجة حرارة التشغيل فيها كانت تحت 200 C و كانت الكفاءة العامة لنظام التوليد حوالي 80% و تعددت النماذج من هذا النوع لتتراوح من KW إلى عدد من MW ، و من مساوئها الحاجة إلى البلاتين الغالي الثمن كمحفز بسبب انخفاض درجة حرارة التشغيل . 2. خلية وقود الكربونات المائعة ( MCFC ) : يصنع فيها غشاء التحلل ( الفصل ) من مزيج كربوني قلوي منحل موضوع في قالب مثقب مصنوع من مزيج من الألمنيوم و الليثيوم ، يتفاعل الأوكسجين مع ثاني أوكسيد الكربون و يطلقان الكربونات و أيونات الكربون الموجبة ثم تتفاعل هذه الأخيرة مع الهيدروجين لتشكل بخار الماء و ثاني أوكسيد الكربون و تطلق الكترونات في دارة وصل خارجية ، و تعمل تحت درجة حرارة 650 C ، و هذا النوع لا يحتاج إلى أغشية فصل غالية و مردود عملية التوليد حوالي 70 % و ذلك في مجال توليد من 0.25 – 1 MW ، و المشاكل التي تواجهها هي التآكل لمعادن الخلية بفعل الكربونات القلوية السائلة ، بالإضافة إلى التزويد الدائم بثاني أوكسيد الكربون . 3. خلية وقود الأوكسيد الصلبة ( SOFC ) : و غشاء الفصل فيها مصنوع من السيراميك مع يوتيريا الزركونيوم و تعمل تحت درجة حرارة 1000 C ، مردودها يتراوح من 50-80% ، و هي تحل مشاكل النوع السابق و لكنها لا زالت في مرحلة التطوير ، و هي تحتاج إلى دقة عالية في اختيار المواد و توافقها . 4. خلية الوقود ذات غشاء استبدال البروتونات ( PEMFC ) : يحصر فيها غشاء الفصل البوليميري بين قطبين من البلاتين المثقب ، و ليس هناك أي خطر من نشوء تلوث عنها نظراً للطبيعة الصلبة لها ، يتم التفاعل فيها تحت درجة حرارة 100 C ، و هي جيدة لمجالات الاستخدام المحدودة ( الصغيرة ) كما في قطاع النقل . 5. الخلايا القلوية ( AFC ) :و هي الخلية التي استخدمت في سفينة الفضاء APOLO-11 و من مشاكلها أنها تحتاج إلى الأوكسجين النقي .



    مضخات الهيدروجين Hydrogen Pumps)


    لا تختلف مضخات الهيدروجين في تصميمها و مبادئ عملها عن مضخات السوائل الأخرى عموماً و لكن يتم التركيز في صناعتها على اختيار المعدن الذي سيتعرض إلى ظروف تشغيل تصل فيها درجة الحرارة إلى -250 C ، أما أكثر أنواع مضخات الهيدروجين استخداماً فهي المضخات النابذية و من اجل التدفقات الكبيرة تستخدم المضخات التوربينية و يظهر في الشكل بعض أنواع المضخات المستخدمة ، و تختلف درجة التعقيد و الدقة المطلوبة في تصميم و صناعة مضخات الهيدروجين تبعاً لمجال العمل الذي ستقوم به ، و لعل أكثر مضخات الهيدروجين تعقيداً و كلفةً على الإطلاق تلك المستخدمة في محركات الصواريخ العاملة على الوقود الهيدروجيني أو في محطات العنفات الغازية حيث يتطلب الأمر تدفقات كبيرة لوقود الاحتراق ( و هي ليست في مجال الدراسة المطروحة هنا ) .


    [
    ] الطاقة الناتجة عن اندماج الهيدروجين


    هذا القسم من الدراسة المقدمة يبتعد عن استخدام الهيدروجين في الخلايا أو كوقود محترق ذو طاقة حرارية عالية ، إن هذا الجزء يعتمد على الحصول على طاقة الهيدروجين الحقيقية الناتجة عن اندماج ذرات الهيدروجين ، أو ما يسمى بالتفاعل الشمسي ، و هو الأمر الذي تمكن الإنسان من الوصول إليه عند إنتاجه القنبلة الهيدروجينية و التي أظهرت مقدار هذه الطاقة الهائلة التي تعادل أضعاف الطاقة الحرارية الناتجة عن التفاعلات النووية الانشطارية و لكنه لم يتمكن من التحكم به لاستخدامه سلمياً في المفاعلات . و ظل الأمر موضوع البحث حتى يومنا هذا و نتيجة للتعاون بين عدة دول في العالم هي الولايات المتحدة الأمريكية و اليابان و روسيا و كندا و الصين توصلوا إلى ما سمي بـ مفاعل ITER اختصاراً لـ International Thermonuclear Experimental Reactor .

    لمحة اقتصادية عن إنتاج الكهرباء بالهيدروجين

    بالعودة إلى توليد الطاقة الكهربائية بالخلايا الهيدروجينية فإن مشكلة التكاليف الاقتصادية الكبيرة كانت و مازالت أحد أهم عوامل الرفض لاستخدام هذه التقنية نظراً للتكلفة العالية . و لكن لا تزال الشركات الصانعة تسعى بجهد لتخفيض تكاليف المشاريع سواء من حيث مرحلة البناء أو الاستثمار أو الصيانة . حتى الآن لا زالت الكلفة مرتفعة نسبياً مقارنة بالكلفة اللازمة لتوليد الكهرباء من المصادر الأخرى و لكن على الرغم من ذلك فقد شهدت تحسناً كبيراً و يمكن أن نعرف التكلفة الحالية من خلال مايلي: في أحد المشاريع المنجزة التي تنتج بلغت التكلفة الإجمالية لإنتاج حوالي 6.570.000 KWh القيم التالية : كلفة 1 KW-h ( cent) الغاية الكلفة الكلية $ 2.73 من أجل أعمال الصيانة 179107 3.42 سعر وقود 224694 و بالتالي كلفة 1 KW-h هي حوالي 6.15 cent و نضيف إلى هذا المبلغ كلفة الخلايا نفسها و التي عمرها حوالي 7.2 million KW-h ، و بالتالي نضيف 3.5 cent و بالتالي التكلفة الإجمالية هي حوالي 9.65 cent لكل KW-h و هو ما يعادل حوالي 5 ليرة سورية . بالتأكيد التكلفة مرتفعة و لكن مع أخذ المنحني الذي يدرس انخفاض تكاليف الإنتاج مع مرور الزمن نجد أن هذه القيمة ستصل إلى أسعار اقتصادية جداً و ذلك إذا استمر العمل بنفس الوتيرة في عمليات التطوير التقنية .
    متطلبات الأمان في التعامل مع الهيدروجين

    يعتبر الهيدروجين عنصراً خطيراً جداً منذ الحادث الشهير الذي حدث في العام 1937 في ولاية نيوجرسي الأمريكية و هو احتراق المنطاد Hindenburg و الذي كان يعتمد على الهيدروجين كعنصر ملء نظراً لخفة وزنه و أدى الحادث إلى مقتل 35 شخصاً في مشهد حريق هائل . و لكن أثبتت التحقيقات لاحقاً أن الهيدروجين لم يكن المسبب الرئيس للوفاة بل إن 27 شخصاً من القتلى مات بسبب القفز من المنطاد ، و 8 بسبب الدخان و الباقون و عدهم 62 شخص بقوا في المنطاد و نجوا ، علماً أن الهيدروجين حينها لم يكن المسبب في الحادث بل كان طلاء المنطاد الذي اشتعل . و تعتبر تعليمات الأمان التي تعطيها وكالة NASA و هي أكثر هيئة تستخدم الهيدروجين في العالم أساساً في الوقاية من أخطاره : 1. إن الهيدروجين يشتعل بلهب غير مرئي ذو درجة حرارة عالية لذلك يجب الحذر الشديد من أن يمس الجلد ، و أبسط طرق الكشف عنه عند الشك بوجوده هو استخدام مكنسة من القش ذات ذراع طويلة لنتفحص بها مكان التسرب . 2. إن الهيدروجين السائل و بسبب الحرارة المنخفضة جداً له يؤدي إلى حدوث ما يسمى بالحرق البارد و هو أشد تأثيراً من الحرق المعروف و يؤدي إلى حدوث وذمة تتضخم بشكل كبير و سريع ، و علاجها سهل من الطبيب و لكن شريطة أن لا يمسها المصاب بتاتاً . 3. إن الهيدروجين من أكثر العناصر نفوذاً على الإطلاق لذلك يجب ارتدا الملابس الواقية و القفازات و واقيات الوجه عند عمليات التعبئة و التفريغ أو عند صيانة الشبكة و الصمامات و عند فك كل ما يمر به الهيدروجين . 4. تنشق الهيدروجين خطير و يسبب حروقاً في الجهاز التنفسي . و بالتالي نجد ضرورة الحذر عند التعامل مع الهيدروجين مع العلم أن الالتزام التام بتعليمات الأمان يضمن بشكل كامل سلامة الشخص فالهيدروجين عنصر أمين بمدى إدراكنا لكيفية التعامل معه .

  2. [2]
    نزار ابوفاتح
    نزار ابوفاتح غير متواجد حالياً
    عضو فعال


    تاريخ التسجيل: Dec 2007
    المشاركات: 119
    Thumbs Up
    Received: 1
    Given: 0
    جزاكم الله عنا كل خير

    0 Not allowed!



  3. [3]
    azert_88
    azert_88 غير متواجد حالياً
    عضو
    الصورة الرمزية azert_88


    تاريخ التسجيل: Apr 2010
    المشاركات: 13
    Thumbs Up
    Received: 0
    Given: 0

    0 Not allowed!



  4. [4]
    ناصر999
    ناصر999 غير متواجد حالياً
    عضو فعال


    تاريخ التسجيل: Sep 2011
    المشاركات: 86
    Thumbs Up
    Received: 1
    Given: 1
    السلام عليكم
    جزى الله هذا العضو كل الخير لاجابته عن هذا التساؤل وهو كيفية ضغط واسالة غاز الهيدروجين ولكن نحن نريد شيىء محدد واجابة محددة يعني الطريقة الفنية من الالف الى الياء وهل اسطوانات الغاز العادي لا تنفع للتخزين
    نرجو من الاخ والمختصين في مجال النفط ان يرفقو الشرح برسم هندسي بسيط وقد اعجبني ما قام به الامريكي ميكائيل ستريزكي الذي صادقناه على الفيس بوك من استغلال الكهرباء المنتجة من الشمس في تحليل الماء الى عنصريه وقيامه بتخزين هذا الغاز في عشرة صهاريج كبيرة امام منزله ولكن كيف لا اعرف على الرغم من اني سالته ولكنه لم يجبني.

    0 Not allowed!



  5. [5]
    سامح صفى الدين
    سامح صفى الدين غير متواجد حالياً
    عضو متميز
    الصورة الرمزية سامح صفى الدين


    تاريخ التسجيل: Aug 2006
    المشاركات: 553
    Thumbs Up
    Received: 3
    Given: 0
    جزاك الله كل خير على هذه المعلومات القيمة

    0 Not allowed!



  6. [6]
    adfrft
    adfrft غير متواجد حالياً
    عضو


    تاريخ التسجيل: Aug 2010
    المشاركات: 15
    Thumbs Up
    Received: 0
    Given: 12
    الله يعطيك العافيه وجعل هذه المعلومات القيمه في ميزان حسناتك .

    0 Not allowed!



  7. [7]
    ميكوو
    ميكوو غير متواجد حالياً
    عضو


    تاريخ التسجيل: Nov 2007
    المشاركات: 12
    Thumbs Up
    Received: 0
    Given: 0
    علي فكرة اسطوانات تجزين الاكسجين تنفع وهي نفس الفكرة الي عمل بيها الصهاريج

    0 Not allowed!



  
الكلمات الدلالية لهذا الموضوع

عرض سحابة الكلمة الدلالية

RSS RSS 2.0 XML MAP HTML