دورات هندسية

 

 

أقوى مكتبة Finite Element متجددة باستمرار

صفحة 1 من 2 12 الأخيرةالأخيرة
النتائج 1 إلى 10 من 14
  1. [1]
    meshkah
    meshkah غير متواجد حالياً

    عضو فعال

    تاريخ التسجيل: Mar 2007
    المشاركات: 53
    Thumbs Up
    Received: 0
    Given: 0

    أقوى مكتبة Finite Element متجددة باستمرار

    اليوم أهديكم أقوى مكتبة Finite Element يمكن أن تو جد على الانترنت و متجددة باستمرار


    المكتبة هنا

    نبذة عن طريقة الحساب بال Finite Element


    Finite element method


    The finite element method (FEM) (sometimes referred to as finite element analysis) is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as of integral equations. The solution approach is based either on eliminating the differential equation completely (steady state problems), or rendering the PDE into an approximating system of ordinary differential equations, which are then solved using standard techniques such as Euler's method, Runge-Kutta, etc.
    In solving partial differential equations, the primary challenge is to create an equation that approximates the equation to be studied, but is numerically stable, meaning that errors in the input data and intermediate calculations do not accumulate and cause the resulting output to be meaningless. There are many ways of doing this, all with advantages and disadvantages. The Finite Element Method is a good choice for solving partial differential equations over complex domains (like cars and oil pipelines), when the domain changes (as during a solid state reaction with a moving boundary), when the desired precision varies over the entire domain, or when the solution lacks smoothness. For instance, in a frontal crash simulation it is possible to increase prediction accuracy in "important" areas like the front of the car and reduce it in its rear (thus reducing cost of the simulation); Another example would be the simulation of the weather pattern on Earth, where it is more important to have accurate predictions over land than over the wide-open sea.



    FEM example of 2D solution




    Example of 2D mesh


    History

    The finite-element method[1] originated from the needs for solving complex elasticity, structural analysis problems in civil and aeronautical engineering. Its development can be traced back to the work by Alexander Hrennikoff (1941) and Richard Courant (1942). While the approaches used by these pioneers are dramatically different, they share one essential characteristic: mesh discretization of a continuous domain into a set of discrete sub-domains, usually called elements.[2]
    Hrennikoff's work discretizes the domain by using a lattice analogy while Courant's approach divides the domain into finite triangular subregions for solution of second order elliptic partial differential equations (PDEs) that arise from the problem of torsion of a cylinder [3]. Courant's contribution was evolutionary, drawing on a large body of earlier results for PDEs developed by Rayleigh, Ritz, and Galerkin.
    Development of the finite element method began in earnest in the middle to late 1950s for airframe and structural analysis and gathered momentum at the University of Stuttgart through the work of John Argyris and at Berkeley through the work of Ray W. Clough in the 1960s for use in civil engineering.[4] By late 1950s, the key concepts of stiffness matrix and element assembly existed essentially in the form used today[5] and NASA issued request for proposals for the development of the finite element software NASTRAN in 1965. The method was provided with a rigorous mathematical foundation in 1973 with the publication of Strang and Fix's An Analysis of The Finite Element Method[6], and has since been generalized into a branch of applied mathematics for numerical modeling of physical systems in a wide variety of engineering disciplines, e.g., electromagnetism and fluid dynamics.





    FAE visualization

    Application

    A variety of specializations under the umbrella of the mechanical engineering discipline (such as aeronautical, biomechanical, and automotive industries) commonly use integrated FEM in design and development of their products. Several modern FEM packages include specific components such as thermal, electromagnetic, fluid, and structural working environments. In a structural simulation, FEM helps tremendously in producing stiffness and strength visualizations and also in minimizing weight, materials, and costs. FEM allows detailed visualization of where structures bend or twist, and indicates the distribution of stresses and displacements. FEM software provides a wide range of simulation options for controlling the complexity of both modeling and analysis of a system. Similarly, the desired level of accuracy required and associated computational time requirements can be managed simultaneously to address most engineering applications. FEM allows entire designs to be constructed, refined, and optimized before the design is manufactured. This powerful design tool has significantly improved both the standard of engineering designs and the methodology of the design process in many industrial applications.[7] The introduction of FEM has substantially decreased the time to take products from concept to the production line.[7] It is primarily through improved initial prototype designs using FEM that testing and development have been accelerated.[8] In summary, benefits of FEM include increased accuracy, enhanced design and better insight into critical design parameters, virtual prototyping, fewer hardware prototypes, a faster and less expensive design cycle, increased productivity, and increased revenue.

    For More About Finite Element Method





    .



  2. [2]
    ماجد جلميران
    ماجد جلميران غير متواجد حالياً
    عضو فعال جداً
    الصورة الرمزية ماجد جلميران


    تاريخ التسجيل: Oct 2006
    المشاركات: 318
    Thumbs Up
    Received: 1
    Given: 0
    انت بلا منازع ملك تقنية العنصر المحدد

    0 Not allowed!



  3. [3]
    meshkah
    meshkah غير متواجد حالياً
    عضو فعال


    تاريخ التسجيل: Mar 2007
    المشاركات: 53
    Thumbs Up
    Received: 0
    Given: 0
    شكرا يا أخي على هذا الاطراء وأرجوا أن يستفيد الجميع

    0 Not allowed!



  4. [4]
    awabtaha
    awabtaha غير متواجد حالياً
    عضو فعال جداً
    الصورة الرمزية awabtaha


    تاريخ التسجيل: Oct 2006
    المشاركات: 274
    Thumbs Up
    Received: 10
    Given: 0
    الف شكر جهد مقدر والكتب قيمة جدا
    نفعك الله بهذا المجهود
    سلامات

    0 Not allowed!



  5. [5]
    اشرف بيبو
    اشرف بيبو غير متواجد حالياً
    عضو
    الصورة الرمزية اشرف بيبو


    تاريخ التسجيل: Feb 2008
    المشاركات: 28
    Thumbs Up
    Received: 0
    Given: 0
    مشكوررررررررررررررررررررر

    0 Not allowed!



  6. [6]
    اسلام الكبير
    اسلام الكبير غير متواجد حالياً
    عضو فعال
    الصورة الرمزية اسلام الكبير


    تاريخ التسجيل: Aug 2008
    المشاركات: 91
    Thumbs Up
    Received: 5
    Given: 0
    رائع جدا يا اخى

    0 Not allowed!



  7. [7]
    محمد فارس عمر
    محمد فارس عمر غير متواجد حالياً
    عضو فعال


    تاريخ التسجيل: Feb 2006
    المشاركات: 67
    Thumbs Up
    Received: 0
    Given: 0
    والله معلم

    0 Not allowed!



  8. [8]
    fmharfoush
    fmharfoush غير متواجد حالياً
    عضو فعال جداً
    الصورة الرمزية fmharfoush


    تاريخ التسجيل: Jul 2006
    المشاركات: 266
    Thumbs Up
    Received: 0
    Given: 0
    مشــــــــــــــــــــــــــــــــــــــــــــــــ كور

    0 Not allowed!



  9. [9]
    احمد محمد نجيب
    احمد محمد نجيب غير متواجد حالياً
    عضو فعال
    الصورة الرمزية احمد محمد نجيب


    تاريخ التسجيل: Jan 2007
    المشاركات: 124
    Thumbs Up
    Received: 6
    Given: 6
    سكرا جزيلا وجزاك الله خيرا وفيرا

    0 Not allowed!


    nageeb

  10. [10]
    شمس سالم
    شمس سالم غير متواجد حالياً
    جديد


    تاريخ التسجيل: Feb 2009
    المشاركات: 7
    Thumbs Up
    Received: 0
    Given: 0
    شكرا جزيلا ووفقك الله دوما

    0 Not allowed!



  
صفحة 1 من 2 12 الأخيرةالأخيرة
الكلمات الدلالية لهذا الموضوع

عرض سحابة الكلمة الدلالية

RSS RSS 2.0 XML MAP HTML